Data and Control

A4M36TPJ, 2013/2014

Data

- Products
- Sums
- Sums-of-Products

Products

- Positional
- Sequences
- Lists
- Named
- Nonstrict
- Streams

Positional Products

- Products are compound values that result from gluing other values together.
- Two-dimensional points, Records, ...

$$
\begin{aligned}
E::= & (\text { prod } \\
& \left.E *_{\text {component }}\right) \\
& \left\lvert\,\left(\begin{array}{lll}
\text { get } & N_{\text {index }} & E_{\text {prod }}
\end{array}\right)\right.
\end{aligned}
$$

Positional Products Operational Semantics

Values
$V \in$ ValueExp $::=\ldots \mid\left(\operatorname{prod} V_{1} \ldots V_{n}\right)$
The AnsExp domain and output function $O F$ would also have to be extended to handle prod values.

Evaluation Contexts
$\mathbb{E} \in$ EvalContext $::=\ldots\left|\left(\operatorname{prod} V_{i=1}^{k-1} \mathbb{E} E_{j=k+1}^{n}\right)\right|\left(\right.$ get $\left.N_{\text {index }} \mathbb{E}\right)$
New Stateless Reduction Rule
(get $\left.N_{\text {index }}\left(\operatorname{prod} V_{1} \ldots V_{n}\right)\right) \rightsquigarrow V_{i}$, [get]
where $i=\mathcal{N} \llbracket N_{\text {index }} \rrbracket$ and $1 \leq i \leq n$
Operational semantics for CBV products

Positional Products Denotational Semantics Example

New and Modified Semantic Domains

$$
\text { Prod }=\text { Value } *
$$

$v \in$ Value $=\ldots+$ Prod
New Computation Operation
with-product-comp : Comp \rightarrow (Prod \rightarrow Comp $) \rightarrow$ Comp
The definition is similar to that of with-boolean-comp in Figure 6.26 on page 281.
with-prod-and-checked-index : Comp \rightarrow Int \rightarrow (Prod \rightarrow Int \rightarrow Comp $) \rightarrow$ Comp
$=\lambda$ cif . with-product-comp c

```
    (\lambda\mp@subsup{v}{}{*}. if (1\leqi) ^(i\leq(length v*))
    then (f v** i)
    else (err-to-comp out-of-bounds-product-index) end)
```

New Valuation Clauses
$\mathcal{E} \llbracket\left(\operatorname{prod} E^{*}\right) \rrbracket=\lambda e .\left(\right.$ with-values $\left(\mathcal{E}^{*} \llbracket E^{*} \rrbracket e\right)\left(\lambda v^{*} .\left(\operatorname{Prod} \longmapsto\right.\right.$ Value $\left.\left.\left.v^{*}\right)\right)\right)$
$\mathcal{E} \llbracket\left(\right.$ get $\left.N_{\text {index }} E_{\text {prod }}\right) \rrbracket$
$=\lambda e$. with-prod-and-checked-index $\left(\mathcal{E} \llbracket E_{\text {prod }} \rrbracket e\right) \mathcal{N} \llbracket N_{\text {index }} \rrbracket$
$\left(\lambda v^{*} i .\left(\right.\right.$ val-to-comp $\left.\left.\left(n t h i v^{*}\right)\right)\right)$
Denotational semantics for CBV products

Positional Product Immutable Sequence

$$
\begin{aligned}
E::= & \left(\begin{array}{ll}
\text { seq } & \left.E *_{\text {component }}\right) \\
& \left\lvert\,\left(\begin{array}{ll}
\text { seq }- \text { get } & E_{\text {index }} \\
E_{\text {seq }}
\end{array}\right)\right. \\
& \left\lvert\,\left(\begin{array}{ll}
\text { seq }- \text { get } & E_{\text {seq }}
\end{array}\right)\right.
\end{array}\right.
\end{aligned}
$$

Named Products

$$
\begin{aligned}
E::= & (\text { record } \\
& I_{\text {fieldName }} \\
& \left.E_{\text {fieldDefn }}\right) \\
& (\text { select } \\
I_{\text {fieldName }} & \left.E_{\text {record }}\right)
\end{aligned}
$$

(let ((r (record (test (= 0 1)) (yes (* 2 3)) (no (+ 4 5)))))
(if (select test r) (select yes r) (select no r))

Non-Strict Products

- Previous products were strict products, in which the expressions specifying the components were fully evaluated.
- Another type of products are non-strict products, in which the component computations themselves are stored within the product value and are performed only when their values are "demanded."

Non-Strict Products Operational Semantics

```
Values
    V ValueExp ::= ...|(nprod E E ... E E )
```

The AnsExp domain and output function $O F$ would also have to be extended to
handle nprod values.

Evaluation Contexts

```
E}\in\mathrm{ EvalContext ::= .. | (nget N Nindex }\mathbb{E}\mathrm{ )
```

New Stateless Reduction Rule

```
(nget Nindex (nprod E E \ldots. E En)) }\rightsquigarrow\mp@subsup{E}{i}{},\quad[nget
    where }i=\mathcal{N}\llbracket\mp@subsup{N}{\mathrm{ index }}{}\rrbracket\mathrm{ and 1}1\leqi\leq
```

Operational semantics for CBN products

Non-Strict Products Denotational Semantics

New and Modified Semantic Domains
NProd $=$ Comp*
$v \in$ Value $=\ldots+$ NProd
New Computation Operation
with-nprod-and-checked-index : Comp \rightarrow Int \rightarrow (NProd \rightarrow Int \rightarrow Comp $) \rightarrow$ Comp The definition is similar to that of with-prod-and-checked-index in Figure 10.1 on page 543 .

New Valuation Clauses
$\mathcal{E} \llbracket\left(\operatorname{nprod} E^{*}\right) \rrbracket=\lambda e .\left(\operatorname{NProd} \leftrightarrows \operatorname{Value}\left(\mathcal{E}^{*} \llbracket E^{*} \rrbracket e\right)\right)$
$\mathcal{E} \llbracket\left(\right.$ nget $\left.N_{\text {index }} E_{\text {prod }}\right) \rrbracket$
$=\lambda e$. with-nprod-and-checked-index $\left(\mathcal{E} \llbracket E_{\text {prod }} \rrbracket e\right) \mathcal{N} \llbracket N_{\text {index }} \rrbracket$ ($\lambda c^{*} i$. (nth $\left.i c^{*}\right)$)

Denotational semantics for CBN products

Sums

- A sum is a data structure that can hold one of several different kinds of values. Sums are used in situations where programmers use the terms "either" or "one of" to informally describe a data structure
- For example:
- A linked list is either a list node (with head and tail components) or the empty list.
- A graphics system might support shapes that are either circles, rectangles, or triangles.
- In a banking system, a transaction might be one of deposit, withdrawal, transfer, or balance query.

Sums

- A sum value pairs an underlying value, which we call its payload, with a tag that indicates which kind of value the payload is.
- Processing a sum value usually involves performing a case analysis on its tag and manipulating its payload accordingly.

Sums

```
E::=(one I Itag E E payload}
    |(tagcase Edisc I Imayload ( Itag E Ebody)* (else E Else)*
    (one Itag E Eayload) }\mp@subsup{)}{ds}{}(\mathrm{ pair (sym Itag}) E Eayload
```

```
(tagcase E E disc I I payload ( (I E Ei)ni=1 (else E Else)")
```

(tagcase E E disc I I payload ((I E Ei)ni=1 (else E Else)")
\rightsquigarrowds
\rightsquigarrowds
(let ((Itag (fst I Iisc))) {I Itag fresh}
(let ((Itag (fst I Iisc))) {I Itag fresh}
(cond
(cond
((sym=? I Iag (sym I I)) (let ((I (payload (snd I Idisc))) E Ei}))\mp@subsup{)}{i=1}{n
((sym=? I Iag (sym I I)) (let ((I (payload (snd I Idisc))) E Ei}))\mp@subsup{)}{i=1}{n
(else E Else}\mp@subsup{)}{}{?}))

```
                (else E Else}\mp@subsup{)}{}{?}))
```


Sum-of-Products

- In practice, sum and product data are often used together in idiomatic ways.
- Many common data structures can be viewed as a tree constructed from different kinds of nodes, each of which has multiple components.

Sum-of-Products Examples

- A shape in a simple geometry system is either:
- a circle with a radius;
- a rectangle with a width and a height;
- a triangle with three side lengths.
- A list of integers is either:
- an empty list;
- a list node with an integer head and an integer-list tail.

Sum-of-Products Examples

As a simple example, consider the following list of geometric shapes:
(list (one rectangle (record (width 3) (height 4)))
(one triangle (record (side1 5) (side2 6) (side3 7)))
(one square (record (side 2))))
(def (perim shape)
(tagcase shape r
(square (* 4 (select side r)))
(rectangle (* 2 (+ (select width r) (select height r))))
(triangle (+ (select side1 r)
(+ (select side2 r) (select side3 r)))))

Data Declarations

- Programming with "raw" sums and products is cumbersome and error-prone.
- It is very reasonable to introduce data declaration constructs into the language.

Data Declarations

(def-data shape
(square side)
(rectangle width height)
(triangle side1 side2 side3))

```
(list (square 2) (rectangle 3 4) (triangle 7 8 9))
(list (one square (prod 2))
    (one rectangle (prod 3 4))
    (one triangle (prod 5 6 7)))
```


Continuations

- A computation can be viewed as an iteration over currently evaluated expression and the continuation of the current expression.
- Thanks to enhanced control of the program flow, continuations can be used to return multiple values, nonlocal exits, error-handling and backtracking.

Continuation Passing Style Multiply Example (No CPS)

$$
\begin{aligned}
\text { multiply } & : R^{*} \rightarrow R & \\
\text { multiply }(\rangle) & =1 & \\
\text { multiply }\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right) & =a_{1} \cdot \text { multiply }\left(\left\langle a_{2}, \ldots, a_{n}\right\rangle\right) & \text { if } a_{1} \neq 0 \\
\text { multiply }\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right) & =0 \quad \text { otherwise } &
\end{aligned}
$$

Continuation Passing Style Multiply Example (CPS)

multiplyCPS: $R^{*} \rightarrow R$
multiplyCPS $\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=\operatorname{mult}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, \lambda x . x\right)$

$$
\begin{gathered}
\text { mult }: R^{*} \times(R \rightarrow R) \rightarrow R \\
\operatorname{mult}(\rangle, k)=k(1) \\
\operatorname{mult}\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle, k\right)=\operatorname{mult}\left(\left\langle a_{2}, \ldots, a_{n}\right\rangle,\right. \\
\left.\lambda x . k\left(a_{1} \cdot x\right)\right) \quad \text { if } a_{1} \neq 0 \\
\operatorname{mult}\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle, k\right)=0 \quad \text { if } a_{1}=0
\end{gathered}
$$

Continuation Passing Style RegExp Matcher Example

match : RegExp $\times A^{*} \rightarrow$ Boolean

$\operatorname{match}\left(r,\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=\operatorname{true}$ if $m\left(r,\left\langle a_{1}, \ldots, a_{n}\right\rangle, \lambda x . x\right)=\langle \rangle$ $\operatorname{match}\left(r,\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=$ false otherwise

Continuation Passing Style RegExp Matcher Example

$$
\begin{aligned}
A^{\perp} & =A^{*} \cup\{\perp\} \\
m & : \operatorname{Reg} \operatorname{Exp} \times A^{\perp} \times\left(A^{\perp} \rightarrow A^{\perp}\right) \rightarrow A^{\perp} \\
m(r, \perp, k) & =k(\perp) \\
m(\epsilon,\langle \rangle, k) & =k(\langle \rangle) \\
m\left(\epsilon,\left\langle a_{1}, \ldots, a_{n}\right\rangle, k\right) & =k\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right) \\
m(a,\langle \rangle, k) & =k(\perp)
\end{aligned}
$$

Continuation Passing Style RegExp Matcher Example

$$
\begin{aligned}
m\left(a,\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle, k\right) & =k\left(\left\langle a_{2}, \ldots, a_{n}\right\rangle\right) \quad \text { if } a=a_{1} \\
m\left(a,\left\langle a_{1}, \ldots, a_{n}\right\rangle, k\right) & =k(\perp) \quad \text { if } a \neq a_{1} \\
m\left(r_{1} \cdot r_{2},\left\langle a_{1}, \ldots, a_{n}\right\rangle, k\right) & =m\left(r_{1},\left\langle a_{1}, \ldots, a_{n}\right\rangle, \lambda x \cdot m\left(r_{2}, x, k\right)\right)
\end{aligned}
$$

Continuation Passing Style RegExp Matcher Example

$$
\begin{aligned}
m\left(r_{1}+r_{2},\left\langle a_{1}, \ldots, a_{n}\right\rangle, k\right) & =m\left(r_{1},\left\langle a_{1}, \ldots, a_{n}\right\rangle\right. \\
& \lambda x . \text { if } k(x)=\langle \rangle \text { then }\left\rangle \text { else } m\left(r_{2},\left\langle a_{1}, \ldots, a_{n}\right\rangle, k\right)\right)
\end{aligned}
$$

Continuation Passing Style RegExp Matcher Example

$$
m\left(r^{*},\left\langle a_{1}, \ldots, a_{n}\right\rangle, k\right)=m\left(\epsilon+\left(r \cdot r^{*}\right),\left\langle a_{1}, \ldots, a_{n}\right\rangle, k\right)
$$

