Data and Control

AAM36TPJ, 2013/2014

Data

e Products
e Sums

e Sums-of-Products

Positional
Sequences
Lists
Named
Nonstrict

Streams

Products

Positional Products

* Products are compound values that result from
gluing other values together.

e [wo-dimensional points, Records, ...

E :::(p”l“Od E*component)
|(g€t Nz’ndeaz Ep?"Od)

Positional Products
Operational Semantics

Values
V € ValueExp := ... | (prod V; ... V)

The AnsExp domain and output function OF would also have to be extended to
handle prod values.

Evaluation Contexts
E € EvalContext == ... | (prod Vi E E"_,.}) | (get Ninger E)

New Stateless Reduction Rule
(get Ninger (prod Vi ... V,)) ~ V;, |get]
where i = N[Njpges] and 1 < i< n

Operational semantics for CBV products

Positional Products Denotational
Semantics Example

New and Modified Semantic Domains

Prod = Value™
v € Value = ... + Prod

New Computation Operation
with-product-comp : Comp — (Prod — Comp) — Comp
The definition is similar to that of with-boolean-comp in Figure 6.26 on page 28]1.

with-prod-and-checked-index : Comp — Int — (Prod — Int — Comp) — Comp
= Acif . with-product-comp c
(Av*. if (1<4) A (i < (length v*))
then (f v* 1)
else (err-to-comp out-of-bounds-product-index)

end)
New Valuation Clauses
El(prod E*)] = Xe. (with-values (E*[E*] e) (Av* . (Prod — Value v*)))

gﬂ(get Nindex Eprod)]]
= Ae . with-prod-and-checked-index (E[Eproa] €) N[Nindex]
(Av*i . (val-to-comp (nth i v*)))

Denotational semantics for CBV products

Positional Product -
Immutable Sequence

E ZZ:(SeC] E*component)
(S@Q — get Eindex Eseq)
(seq — get Eseq)

Named Products

E:::(T’GCOTd]fieldName EfieldDefn)

‘(SeleCt IfieldName Erecard)

(let ((r (record (test (= 0 1)) (yes (* 2 3)) (no (+ 4 5)))))
(if (select test r) (select yes r) (select no r)))

Non-Strict Products

* Previous products were strict products, in which

the expressions specitying the components were
fully evaluated.

* Another type of products are non-strict products, in
which the component computations themselves
are stored within the product value and are
performed only when their values are
“demanded.”

Non-Strict Products
Operational Semantics

Values
V € ValuekExp ::= ... | (nprod E; ... E,)

The AnsExp domain and output function OF would also have to be extended to
handle nprod values.

Evaluation Contexts
E € EvalContext ::= ... | (nget Nindes E)

New Stateless Reduction Rule
(nget Nipger (nprod E; ... E,)) ~ E;, |nget]
where i = N[Njpgez] and 1 < i <n

Operational semantics for CBIN products

Non-Strict Products
Denotational Semantics

New and Modified Semantic Domains
NProd = Comp™

v € Value = ... + NProd

New Computation Operation

with-nprod-and-checked-index : Comp — Int — (NProd — Int — Comp) — Comp
The definition is similar to that of with-prod-and-checked-index in Figure 10.1

on page 543.

New Valuation Clauses
E[(nprod E*)] = Xe.(NProd —Value (E*[E*] €))

5[[(Ilget Nz’ndex Eprod)]]
— \e. with-nprod-and-checked-index (E[Eproq] €) N[Nindez]
(Ac*i. (nth i c*))

Denotational semantics for CBN products

Sums

A sum is a data structure that can hold one of several different
kinds of values. Sums are used in situations where programmers

use the terms “either” or “one ot” to informally describe a data
structure

e For example:

o Alinked list is either a list node (with head and tail components)
or the empty list.

e A graphics system might support shapes that are either circles,
rectangles, or triangles.

* In a banking system, a transaction might be one of deposit,
withdrawal, transter, or balance query.

Sums

A sum value pairs an underlying value, which we

call its payload, with a tag that indicates which
kind of value the payload is.

* Processing a sum value usually involves
performing a case analysis on its tag and
manipulating its payload accordingly.

Sums

E:::(One Itag Epayload)

|(t&gCCL86 Egisc Ipayload (Itag Ebody)* (6[86 Eelse)*
(One]ta,g Epayload) ~M7ds (pair (S.Vm]tag) Epayload)

(tagcase Fyise Ipayioaa (i E;)7_, (else Eose))

M ds (1et ((Idisc Edz’sc)> {Idz’sc fT@Sh}
(let ((Lyaq (£st lgise))) {liag fresh}
(cond

((sym=? Iin, (sym 1;)) (let ((Upayioad (snd Igisc))) Ep))i,
(else E.se) D))

Sum-of-Products

* |n practice, sum and product data are often used
together in iIdiomatic ways.

* Many common data structures can be viewed as a
tree constructed from different kinds of nodes,
each of which has multiple components.

Sum-of-Products Examples

* A shape in a simple geometry system is either:
e acircle with a radius;
e arectangle with a width and a height;
e atriangle with three side lengths.
* A list of integers is either:
e an empty list;

e alist node with an integer head and an integer-list tail.

Sum-of-Products Examples

As a simple example, consider the following list of geometric shapes:

(list (one rectangle (record (width 3) (height 4)))
(one triangle (record (sidel 5) (side2 6) (side3 7)))
(one square (record (side 2))))

(def (perim shape)
(tagcase shape r
(square (*x 4 (select side r)))
(rectangle (*x 2 (+ (select width r) (select height r))))
(triangle (+ (select sidel r)
(+ (select side2 r) (select side3 r))))))

Data Declarations

 Programming with “raw” sums and products is
cumbersome and error-prone.

e |tis very reasonable to introduce data declaration
constructs into the language.

Data Declarations

(def-data shape
(square side)
(rectangle width height)
(triangle sidel side2 side3))

(list (square 2) (rectangle 3 4) (triangle 7 8 9))

(list (one square (prod 2))
(one rectangle (prod 3 4))
(one triangle (prod 5 6 7)))

Continuations

A computation can be viewed as an iteration over
currently evaluated expression and the
continuation of the current expression.

* [hanks to enhanced control of the program flow,
continuations can be used to return multiple values,
nonlocal exits, error-nandling and backtracking.

Continuation Passing Style
Multiply Example (No CPS)

multiply : R — R
multiply(()) =1
multiply({a1,as, ..., a,)) = a1 - multiply({as, .. ., an)) if a; #0
multiply({ai,...,a,)) =0 otherwise

Continuation Passing Style
Multiply Example (CPS)

multiplyCPS : R* — R
multiplyC PS({a1,...,an)) = mult({ai,...,an), Ax.T)

mult : R* X (R — R) = R
mult({), k) = k(1)
mult({ai,as,...,an), k) = mult({as,...,an),
Ae.k(ar-x)) ifayp #0
mult({a1,...,an,), k) =0 ifa; =0

Continuation Passing Style
RegbeExp Matcher Example

match : RegExp x A® — Boolean
match(r, (a1, ...,ay)) = true if m(r,{ay,...,an), Ax.x) = ()

match(r,{(ay,...,a,)) = false otherwise

Continuation Passing Style
RegbeExp Matcher Example

At =AU {L}
m : RegExp x A+ x (At — A+) — A+
m(r, L, k) = k(L)
m(e, (), k) = k({))
m(e, (a1,...,an), k) =k((a,..., an))
m(a, (), k) = k(L)

Continuation Passing Style
RegbeExp Matcher Example

m(a, {(a1,as,...,a,), k) = k({ag,..., an)) if a=aq
m(a <a1 Jan), k) =k(L) if a # aq
m(ry - 1o, (a1, ...,an), k) =m(ry,{(a1,...,an), Ax.m(re, x, k))

Continuation Passing Style
RegbeExp Matcher Example

m(ry + ro, (a1, ...,an), k) =m(ry, {(a1,...,an),
Ax.if k(x) = () then () else m(rs, (a1,...,an),k))

Continuation Passing Style
RegbeExp Matcher Example

