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Data

• Products 

• Sums 

• Sums-of-Products



Products
• Positional 

• Sequences 

• Lists 

• Named 

• Nonstrict 

• Streams



Positional Products

• Products are compound values that result from 
gluing other values together. 

• Two-dimensional points, Records, …

E ::=(prod E⇤
component
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index
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Positional Products 
Operational Semantics

10.1.1 Positional Products 543

Values
V ∈ ValueExp ::= . . . | (prod V1 . . . Vn)

The AnsExp domain and output function OF would also have to be extended to
handle prod values.

Evaluation Contexts
E ∈ EvalContext ::= . . . | (prod V k−1

i=1 E En
j=k+1) | (get Nindex E)

New Stateless Reduction Rule
(get Nindex (prod V1 . . . Vn)) ! Vi , [get]

where i = N [[Nindex ]] and 1 ≤ i ≤ n

Operational semantics for CBV products

New and Modified Semantic Domains
Prod = Value*

v ∈ Value = . . . + Prod

New Computation Operation
with-product-comp : Comp → (Prod → Comp) → Comp
The definition is similar to that of with-boolean-comp in Figure 6.26 on page 281.

with-prod-and-checked-index : Comp → Int → (Prod → Int → Comp) → Comp
= λcif . with-product-comp c

(λv∗ . if (1 ≤ i) ∧ (i ≤ (length v∗))
then (f v∗ i)
else (err-to-comp out-of-bounds-product-index)
end)

New Valuation Clauses
E [[(prod E∗)]] = λe . (with-values (E∗[[E∗]] e) (λv∗ . (Prod "Value v∗)))

E [[(get Nindex Eprod)]]
= λe . with-prod-and-checked-index (E [[Eprod ]] e) N [[Nindex ]]

(λv∗i . (val-to-comp (nth i v∗)))

Denotational semantics for CBV products

Figure 10.1 Operational and denotational semantics of immutable positional products
in CBV FLICK.
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Positional Product - 
Immutable Sequence
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Named Products

E ::=(record I

fieldName

E

fieldDefn

)

|(select I

fieldName

E

record

)

10.1.2 Named Products 549

let val p = (0=1, 2*3, 4+5)
in if #1(p) then #2(p) else #3(p)

end

For immutable sequences (as well as for mutable arrays) a subscripting no-
tation using square brackets is a standard way to project components, and :=

might be used for an update operation.

Exercise 10.4

a. What changes would need to be made in Exercise 10.1 (page 545) to specify 0-based
indexing rather than 1-based indexing?

b. What changes would need to be made to the syntax for sequences and in Exercise 10.1
to specify an indexing scheme that starts at an arbitrary dynamically determinable
value low rather than 0 or 1?

10.1.2 Named Products

In a named product, components are indexed by names rather than by po-
sitions. In Section 7.2.3, we introduced the record, a classic form of named
product, and studied its semantics. We saw that records were effectively reified
environments. Here we discuss some of the design issues for named products.

The simplest form of named product is a named version of positional products
with a product creator (record) and a product projector (select):

E ::= . . .
| (record (IfieldName EfieldDefn)

∗) [RecordCreation]
| (select IfieldName Ercd) [RecordProjection]

As above, we assume that such constructs are embedded in a call-by-value lan-
guage and denote immutable products.

As a simple example of records, consider the following expression, which eval-
uates to 9 :

(let ((r (record (test (= 0 1)) (yes (* 2 3)) (no (+ 4 5)))))
(if (select test r) (select yes r) (select no r)))

The order of bindings in the record constructor is irrelevant, so the value of the
above expression would not change if the record subexpression were changed to

(record ((no (+ 4 5)) (test (= 0 1)) (yes (* 2 3))))

Many languages with named products have special syntax for record creation and
projection. For instance, here is our example expressed in SML record syntax:



Non-Strict Products
• Previous products were strict products, in which 

the expressions specifying the components were 
fully evaluated. 

• Another type of products are non-strict products, in 
which the component computations themselves 
are stored within the product value and are 
performed only when their values are 
“demanded.” 



Non-Strict Products 
Operational Semantics

552 Chapter 10 Data

Values
V ∈ ValueExp ::= . . . | (nprod E1 . . . En)

The AnsExp domain and output function OF would also have to be extended to
handle nprod values.

Evaluation Contexts
E ∈ EvalContext ::= . . . | (nget Nindex E)

New Stateless Reduction Rule
(nget Nindex (nprod E1 . . . En)) ! Ei , [nget]

where i = N [[Nindex ]] and 1 ≤ i ≤ n

Operational semantics for CBN products

New and Modified Semantic Domains
NProd = Comp*

v ∈ Value = . . . + NProd

New Computation Operation
with-nprod-and-checked-index : Comp → Int → (NProd → Int → Comp) → Comp
The definition is similar to that of with-prod-and-checked-index in Figure 10.1
on page 543.

New Valuation Clauses
E [[(nprod E∗)]] = λe . (NProd "Value (E∗[[E∗]] e))

E [[(nget Nindex Eprod)]]
= λe . with-nprod-and-checked-index (E [[Eprod ]] e) N [[Nindex ]]

(λc∗i . (nth i c∗))

Denotational semantics for CBN products

Figure 10.2 Operational and denotational semantics for CBN positional products in
call-by-value FLICK.

side effects of the argument expressions are performed exactly once, when the
product is created.

Lazy (CBL) Products

In CBN products, the component computation is reevaluated at every projec-
tion. Another option, inspired by the call-by-need (a.k.a. call-by-lazy) parameter-
passing mechanism, is to evaluate the component computation at the very first
projection and memoize the resulting value for later projections. We shall call
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Sums
• A sum is a data structure that can hold one of several different 

kinds of values. Sums are used in situations where programmers 
use the terms “either” or “one of” to informally describe a data 
structure 

• For example: 

• A linked list is either a list node (with head and tail components) 
or the empty list.  

• A graphics system might support shapes that are either circles, 
rectangles, or triangles.  

• In a banking system, a transaction might be one of deposit, 
withdrawal, transfer, or balance query. 



Sums

• A sum value pairs an underlying value, which we 
call its payload, with a tag that indicates which 
kind of value the payload is.  

• Processing a sum value usually involves 
performing a case analysis on its tag and 
manipulating its payload accordingly. 



Sums
E ::=(one I

tag

E

payload

)

|(tagcase E
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) ⇤ (else E

else

)⇤

570 Chapter 10 Data

E ::= ...
| (one Itag Epayload) [NamedInjection]
| (tagcase Edisc Ipayload (Itag Ebody)

∗ (else Eelse)
?) [NamedCaseAnalysis]

The expression (one Itag Epayload) creates a sum value, which we shall call a
oneof, that conceptually pairs the tag name Itag with the payload value denoted
by Epayload . We say that one injects the value of Epayload into a sum value. We
can imagine that one is defined by the following desugaring:

(one Itag Epayload) !ds (pair (sym Itag) Epayload)

Oneofs are decomposed with (tagcase Edisc Ipayload (Itag Ebody)
∗), which

evaluates the discriminant Edisc to what should be a oneof value vdisc , and
dispatches to the body clause (Ii Ei) whose tag Ii matches the tag of vdisc . The
value of the tagcase expression is the result of evaluating the body expression
Ei of the matching body clause in a scope where Ipayload is bound to the payload
of vdisc . A tagcase expression may have an optional6 else clause whose body
Eelse is used when no body-clause tag matches the discriminant tag. Ipayload is
unbound in the else clause. It is an error if Edisc does not evaluate to a oneof or
if there is no clause in an else-less tagcase whose tag matches the discriminant
tag. We can imagine that tagcase is defined by the following desugaring:

(tagcase Edisc Ipayload (Ii Ei)
n
i=1 (else Eelse)

?)
!ds (let ((Idisc Edisc)) {Idisc fresh}

(let ((Itag (fst Idisc))) {Itag fresh}
(cond

((sym=? Itag (sym Ii)) (let ((Ipayload (snd Idisc))) Ei))
n
i=1

(else Eelse)
?)))

Figure 10.12 presents a definition of extended-number addition using one and
tagcase. In the add procedure, tagcase clarifies the case analyses performed on
the arguments num1 and num2 and highlights the cases where the payload values
(v1 and v2) are used instead of the oneofs that carry them.

Using one and tagcase to abstract over the creation and case analysis of
tagged values has several advantages over using explicit pairs. As illustrated by
the extended-number addition example, it makes programs that use tagged values
easier to read, write, and debug. In Section 11.8.4, we shall see that the ability
to associate different types with the payloads of different tags (e.g., the payload
for the integer tag is an integer whereas the payload for the infinity tag is
a boolean) allows oneofs to be type-checked. Finally, these abstractions give an
implementer the freedom to use more efficient implementations. For instance, if

6Recall from page 32 that a postfix ? indicates an optional syntactic element.
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Sum-of-Products

• In practice, sum and product data are often used 
together in idiomatic ways.  

• Many common data structures can be viewed as a 
tree constructed from different kinds of nodes, 
each of which has multiple components.



Sum-of-Products Examples
• A shape in a simple geometry system is either:  

• a circle with a radius; 

• a rectangle with a width and a height; 

• a triangle with three side lengths. 

• A list of integers is either: 

• an empty list; 

• a list node with an integer head and an integer-list tail.



Sum-of-Products Examples
578 Chapter 10 Data

As a simple example, consider the following list of geometric shapes:

(list (one rectangle (record (width 3) (height 4)))
(one triangle (record (side1 5) (side2 6) (side3 7)))
(one square (record (side 2))))

In this encoding, oneof tags are used to distinguish squares, rectangles, and tri-
angles. The two sides of a rectangle (width and height) and three sides of a
triangle (side1, side2, and side3) are named as fields in a record. Even though
a square has only a single side length (side), it too is encapsulated in a record for
uniformity. Of course, we could have used positional rather than named products,
in which case the meaning of each position would need to be specified.

Manipulating a sum-of-products datum typically involves performing a case
analysis on its tag and extracting the components of the associated record. For
example, here is a procedure that calculates the perimeter of a shape:

(def (perim shape)
(tagcase shape r

(square (* 4 (select side r)))
(rectangle (* 2 (+ (select width r) (select height r))))
(triangle (+ (select side1 r)

(+ (select side2 r) (select side3 r))))))

As another example, consider the sum-of-products encoding of the ELM
temperature conversion expression (/ (* 5 (- (arg 1) 32)) 9) shown in Fig-
ure 10.15. In this encoding, oneof tags distinguish integer literals (lit), arith-
metic operations (arithop), and argument references (arg). The three compo-
nents of an arithmetic operation — the operation symbol (op) and two operands
(rand1 and rand2) are represented as a record. As with square shapes, the sin-
gle number component of a literal expression and the index component of an
argument expression are boxed up into records for uniformity.

To handle this representation for ELM expressions, the elm-eval procedure
from Figure 6.13 on page 243 would be rewritten:

(def (elm-eval exp args)
(tagcase exp r

(lit (select num r))
(arg (get-arg (select index r) args))
(arithop ((primop->proc (select op r))

(elm-eval (select rand1 r) args)
(elm-eval (select rand2 r) args)))))

The rigidity of the above sum-of-products encodings is sometimes relaxed in
practice. For instance, the case where a product has a single component can be
optimized by replacing the product by the component value. If a product has no
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Data Declarations

• Programming with “raw” sums and products is 
cumbersome and error-prone. 

• It is very reasonable to introduce data declaration 
constructs into the language.



Data Declarations

10.4 Data Declarations 583

This is a classic example of a type loophole in C. Pascal’s variant records,
which encode sum-of-products data types in a way reminiscent of C, exhibit a
similar type loophole. The same sort of undesirable behavior can be exhibited
with the Lisp s-expression (square 8 9), for which a perimeter procedure would
return 32 if the means of extracting the side of a square was returning the second
element of an s-expression list. But the difference between Lisp and C/Pascal
on this score is that C and Pascal, unlike Lisp, sport a static type system that
might be expected to catch such type-related bugs at compile time. We will have
much more to say about static typing in Chapter 11.

10.4 Data Declarations

Programming with “raw” sums and products is cumbersome and error-prone.
Here we study a high-level facility for data declaration that simplifies the creation
and manipulation of sum-of-products data. We extend our FL family of languages
with a def-data declaration that specifies a new kind of sum-of-products data.
We introduce this construct via a declaration for geometric shapes:

(def-data shape
(square side)
(rectangle width height)
(triangle side1 side2 side3))

This declaration specifies that a shape is either a square with one component, a
rectangle with two components, or a triangle with three components. Each of the
names square, rectangle, and triangle is a value constructor procedure
(or just constructor for short) that takes the specified number of components
and returns a sum-of-products datum with those components. For example, the
list of shapes

(list (square 2) (rectangle 3 4) (triangle 7 8 9))

is equivalent to the list

(list (one square (prod 2))
(one rectangle (prod 3 4))
(one triangle (prod 5 6 7)))

In contrast with Section 10.3, the sum-of-products data created by def-data

constructors uses positional rather than named products.
In the example, the data name shape and the component names side, width,

height, etc., are just comments. Only the number of components specified for
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Continuations

• A computation can be viewed as an iteration over 
currently evaluated expression and the 
continuation of the current expression. 

• Thanks to enhanced control of the program flow, 
continuations can be used to return multiple values, 
nonlocal exits, error-handling and backtracking.



Continuation Passing Style  
Multiply Example (No CPS)

Programming Language Theory, week 13

1 Lecture

1.1 Data

• Products: positional, sequences, lists, named, nonstrict, streams.

• Sums: positional, named, tagged.

• Sums-of-products: composite design pattern, dynamic dispatch, double

dispatch.

1.2 Continuations

A computation can be viewed as an iteration over currently evaluated expression

and the continuation of the current expression. Thanks to enhanced control of

the program flow, continuations can be used to return multiple values, nonlocal

exits, error-handling and backtracking.

multiply : R

⇤ ! R (1)

multiply(hi) = 1 (2)

multiply(ha1, a2, . . . , ani) = a1 ·multiply(ha2, . . . , ani) if a1 6= 0 (3)

multiply(ha1, . . . , ani) = 0 otherwise (4)

multiplyCPS : R

⇤ ! R (5)

multiplyCPS(ha1, . . . , ani) = mult(ha1, . . . , ani,�x.x) (6)

mult : R

⇤ ⇥ (R ! R) ! R (7)

mult(hi, k) = k(1) (8)

mult(ha1, a2, . . . , ani, k) = mult(ha2, . . . , ani, (9)

�x.k(a1 · x)) if a1 6= 0 (10)

mult(ha1, . . . , ani, k) = 0 if a1 = 0 (11)

1
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exits, error-handling and backtracking.

multiply : R

⇤ ! R (1)

multiply(hi) = 1 (2)

multiply(ha1, a2, . . . , ani) = a1 ·multiply(ha2, . . . , ani) if a1 6= 0 (3)

multiply(ha1, . . . , ani) = 0 otherwise (4)

multiplyCPS : R

⇤ ! R (5)

multiplyCPS(ha1, . . . , ani) = mult(ha1, . . . , ani,�x.x) (6)

mult : R

⇤ ⇥ (R ! R) ! R (7)

mult(hi, k) = k(1) (8)

mult(ha1, a2, . . . , ani, k) = mult(ha2, . . . , ani, (9)

�x.k(a1 · x)) if a1 6= 0 (10)

mult(ha1, . . . , ani, k) = 0 if a1 = 0 (11)
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A

?
= A

⇤ [ {?} (12)

m : RegExp⇥A

? ⇥ (A

? ! A

?
) ! A

?
(13)

m(r,?, k) = k(?) (14)

m(✏, hi, k) = k(hi) (15)

m(✏, ha1, . . . , ani, k) = k(ha1, . . . , ani) (16)

m(a, hi, k) = k(?) (17)

m(a, ha1, a2, . . . , ani, k) = k(ha2, . . . , ani) if a = a1 (18)

m(a, ha1, . . . , ani, k) = k(?) if a 6= a1 (19)

m(r1 · r2, ha1, . . . , ani, k) = m(r1, ha1, . . . , ani,�x.m(r2, x, k)) (20)

m(r1 + r2, ha1, . . . , ani, k) = m(r1, ha1, . . . , ani,
�x.if k(x) = hi then hi else m(r2, ha1, . . . , ani, k))

(21)

match : RegExp⇥A

⇤ ! Boolean (22)

match(r, ha1, . . . , ani) = true if m(r, ha1, . . . , ani,�x.x) = hi (23)

match(r, ha1, . . . , ani) = false otherwise (24)

2 Seminar

1. Implement the regexp matching code in Java, use the composite pattern.

See the Dropbox folder.

2. Add Kleene star to the regexp matching code.

m(r

⇤
, ha1, . . . , ani, k) = m(✏+ (r · r⇤), ha1, . . . , ani, k) (25)

3 Homework

Your task will be to implement translation from an extended version of Feath-

erweight Java to plain Featherweight Java (FJ). The extended FJ di↵ers from

plain FJ in three aspects: i) it has built-in support for numbers and booleans,

ii) it has a fairly standard set of control flow statements and iii) it has mutable

local variables.

2
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