Homework assignment

Use the template source file (hw1.w1 in your repository), implement the semantics described bellow.

Grammar rules:

Convention: $n, m \in Num, e, f, g \in Expr$ and $\cdot, +$ are standard operators on numbers.

$$\frac{1}{n' \Rightarrow 0} \tag{2}$$

$$\overline{\mathbf{X}' \Rightarrow 1}$$
 (3)

$$\overline{(e \oplus f)' \Rightarrow e' \oplus f'} \tag{4}$$

$$\overline{(e \odot f)' \Rightarrow e \odot f' \oplus e' \odot f} \tag{5}$$

$$\frac{e \Rightarrow g}{e \oplus f \Rightarrow g \oplus f} \tag{6}$$

$$\frac{f \Rightarrow g}{e \oplus f \Rightarrow e \oplus g} \tag{7}$$

$$\frac{e \Rightarrow g}{e \odot f \Rightarrow g \odot f} \tag{8}$$

$$\frac{f \Rightarrow g}{e \odot f \Rightarrow e \odot g} \tag{9}$$

Neutral element rules:

$$\frac{1}{0 \oplus e \Rightarrow e} \tag{10}$$

$$\frac{}{e \oplus 0 \Rightarrow e} \tag{11}$$

$$\frac{1 \odot e \Rightarrow e}{1 \odot e \Rightarrow e} \tag{12}$$

$$\frac{}{e \odot 1 \Rightarrow e} \tag{13}$$

Absorbing element rules:

$$0 \odot e \Rightarrow 0$$
(14)

$$e \odot 0 \Rightarrow 0 \tag{15}$$

Evaluation rules:

$$\frac{1}{n \oplus m \Rightarrow n + m}$$

$$\frac{1}{n \odot m \Rightarrow n \cdot m} \tag{17}$$

Naming convention

Use the following names and symbols for expressions (take care about the case sensitivity in Wolfram Mathematica):

- ullet Num $_$ Integer
- $\bullet X x$
- ullet $Expr \oplus Expr exttt{plus}$
- $\bullet \ Expr \odot Expr \mathtt{times}$
- ullet Expr' derivative

Function for expression rewrite (one application of SOS rules) is called oneStepRewrite.

Examples

- x' derivative[x]
- (42+x)' derivative[plus[42,x]]
- $(42 \cdot x)'$ derivative[times[42,x]]
- oneStepRewrite[derivative[x]] = {1}
- oneStepRewrite[derivative[plus[42,x]]] = {plus[derivative[42], derivative[x]]}

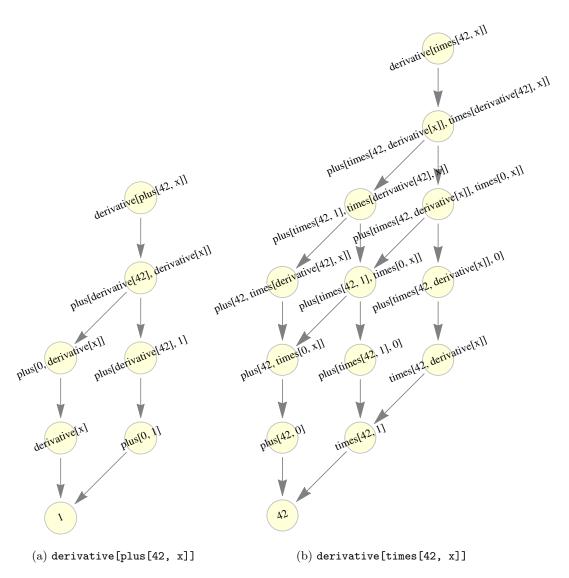


Figure 1: Example expressions evaluation, each arrow represents one call of oneStepRewrite function.