
Service Oriented Architecture & Design Patterns

Jan Jusko

ATG, FEE, CTU

October 24, 2012

Jan Jusko Service Oriented Architecture & Design Patterns



Goals of Service Oriented Computing

increased intrinsic interoperability

services within a given boundary are designed to be naturally
compatible; they can be effectively assembled and reconfigured
if needed
e.g. same ontology

increased federation

services have established uniform contract layer which hides
the underlying complexity
in turn, they can be administered individually

increased vendor diversification options

service-oriented environment is vendor-neutral
the architecture can evolve together with business without any
vendor locks

increased business & technology domain alignment

services are developed with business in mind
easy mirroring and evolution of services in accordance to
business

Jan Jusko Service Oriented Architecture & Design Patterns



Goals of Service Oriented Computing (II)

increased return of investments,

services are to be reusable, thus reduction of costs

increased organizational agility,

new requirements can be incorporated faster since services are
designed with reusability in mind — can be augmented or
reassembled
reduced delivery time

reduced IT burden

single IT environment with agreed standards
particular parts are build to cooperate
reduced integration costs

Jan Jusko Service Oriented Architecture & Design Patterns



Service-Orientation Design Principles

set of principles that should be followed to make (enterprise)
application service-oriented

standardized service contract

services within one directory are in compliance with the
contract design standard

service loose coupling

services are loosely coupled with their clients (via contracts)

service abstraction

services contain only necessary information in the contract
internal workings are hidden
eases the substitution of the service

service reusability

services are “agnostic” and reusable

service autonomy

services have high level of control over their underlying runtime
environment

Jan Jusko Service Oriented Architecture & Design Patterns



Service-Orientation Design Principles (II)

service statelessness

services are stateless unless necessary
lowers resources consumption

service discoverability

services publish meta-data based on which they can be
discovered and interpreted

service composability

services can be composed, regardless of the size or complexity
of the composition

Jan Jusko Service Oriented Architecture & Design Patterns



Physical Design Characteristics

having goals and paradigms explained, the question is — what
should be the physical design like

any practical form, implementation of SOA should have the
following properties:

business-driven — technology architecture is aligned with the
business architecture; this is kept as the business evolves over
time
vendor-neutral — the architecture model is not based on a
single vendor technology, allowing different vendor technologies
to be combined
enterprise-centric — scope of the architecture represents a
reasonable part of the enterprise, enabling reuse
composition-centric — service aggregation is inherently
supported thus allowing for rapid changes in service
composition

Jan Jusko Service Oriented Architecture & Design Patterns



Business-Driven

traditionally, application in enterprises were developed on
as-needed bases to fulfill short-term goals

these weren’t necessarily in accordance with the long term
goals in the enterprise

this resulted in a slow divergence of technology solutions from
the business model

in contrast to that, business-driven architecture uses long-term
goals as a basis and inspiration for architectural model

maximizes the overlap of technology and business in the long
term

Jan Jusko Service Oriented Architecture & Design Patterns



Vendor-Neutral

relying on a technology provided by a single vendor can be
inhibitive in the future when new requirement are to be met,
but the current vendor architecture cannot support it

it is thus important to design a SOA model that is
independent of any vendor-specific architecture and neutral to
all of them

Jan Jusko Service Oriented Architecture & Design Patterns



Enterprise-Centric

traditionally, applications, even the distributed ones, were
designed only for small parts of the enterprise, never reused
anywhere else

when delivering service-oriented solution, services are
positioned as enterprise-resources and have the following
characteristics

logic is available beyond the current application boundary
logic is designed according to established design principles and
enterprise standards

Jan Jusko Service Oriented Architecture & Design Patterns



Composition-Centric

services must not be only reusable, but also easily
composable, i.e. able to participate in an aggregation,
whether this aggregation was planned from the beginning or is
an additional requirement

this native composability must be supported by the underlying
technology architecture

Jan Jusko Service Oriented Architecture & Design Patterns



Architecture Types

technology architecture can be of several forms

service architecture

technology architecture limited to the physical design of a
program designed as a service

service composition architecture

the architecture of set of services assembled into a service
composition
composition can be nested

service directory architecture

the architecture that supports a collection of related services
that are independently standardized and governed

Jan Jusko Service Oriented Architecture & Design Patterns



Design Patterns

a proven solution to a common problem individually
documented in a consistent format and usually as part of a
larger collection

in general, they represent field-tested solutions to common
design problems

can be either simple or compound

design patterns can be applied in variety of creative
application sequences

Jan Jusko Service Oriented Architecture & Design Patterns



Design Patterns Categories

Service Inventory Design Patterns

Service Design Pattern

Service Composition Design Patterns

Jan Jusko Service Oriented Architecture & Design Patterns



Enterprise Inventory

Problem Delivering services independently establishes a risk
of producing inconsistent service and architecture
implementations, compromising recomposition opportunities

happens especially when there are several independent
development efforts, each focusing on its own goals
might result in disparate service clusters and technology
architectures
causes serious issues when attempting to compose services
across various initial architectural boundaries

Solution Standardized, enterprise-wide inventory architecture
wherein services can be freely and repeatedly recomposed

services are designed specifically for implementation within the
enterprise directory
ensures wide-spread standardization and intrinsic
interoperability

Jan Jusko Service Oriented Architecture & Design Patterns



Enterprise Inventory (II)

Application Modeled in advance, enterprise-wide standards
are applied

if the scope of the inventory is significant, the enterprise might
not have resources for upfront modeling
depends on maturity of available technology, number of legacy
environments, financial resources, cultural/political obstacles
recommended for small- to mid- enterprises with enough
resources or tightly controlled IT environment; super-rich
enterprises

Impacts upfront analysis, organizational impacts

depending on the size of the inventory, the upfront analysis
might be huge
instead of top-down-analysis, meet-in-the-middle approach can
be chosen

Jan Jusko Service Oriented Architecture & Design Patterns



Domain Inventory

Problem Enterprise directory is unmanageable

enterprise directory might be impractical or even unrealistic for
large enterprises
objections from e.g. data analysts, developers, business analyst

Solution Grouping services into manageable domain-specific
inventories, independent of each other

Jan Jusko Service Oriented Architecture & Design Patterns



Domain Inventory (II)

Application Inventory domain boundaries need to be carefully
established

appropriate when global data models are unavailable, and
creating them is impossible; the organization is not capable of
changing their IT model;
specific inventory domains must be established in advance
can be based on department structure, geographic location,
etc.
ideally, domains correspond to business domains

Impacts Standardization disparity between domain service
inventories imposes transformation requirements and reduces
the benefit of the SOA adoption

various inventories can have different standards, inter-inventory
service calls must undergo transformation — can complicate
design efforts and performance

Jan Jusko Service Oriented Architecture & Design Patterns



Service Normalization

Problem When delivering services, there is a risk that services
will be created with overlapping functionality, making reuse
difficult

typical when multiple development teams are participating
leads to a denormalization of an inventory
results in inability to establishing official (unique) endpoints for
various logic
services providing the same functionality can go out of sync -
different results

Solution The service inventory needs to be designed with an
emphasis on service boundary alignment

services are collectively modeled before the implementation
takes place

Jan Jusko Service Oriented Architecture & Design Patterns



Service Normalization (II)

Application Functional service boundaries are modeled as
part of a formal analysis process

identifying and decomposing the business process within the
domain
allocating individual parts of the process into appropriate
services
making sure that service boundaries do not overlap

Impacts Ensuring that service boundaries are and remain
well-aligned introduces extra up-front analysis

requires that all processes are modeled before implementation
continual governance effort is required to ensure normalization
after every services adjustment

Jan Jusko Service Oriented Architecture & Design Patterns



Service Design Patterns

these patterns in fact represent the most essential steps
required to partition and organize solution logic into services
and capabilities in support of subsequent composition

Service Identification Patterns — The overall solution logic
required to solve a given problem is first defined, and the
parts of this logic suitable for service encapsulation are
subsequently filtered out

Functional Decomposition
Service Encapsulation

Service Definition Patterns – services are further partitioned
into individual capabilities

Capability Composition Patterns — services and their
capabilities are further composed

Jan Jusko Service Oriented Architecture & Design Patterns



Functional Decomposition

Problem To solve a large, complex business problem a
corresponding amount of solution logic needs to be created —
self contained application

self contained monolithic applications are single-purpose, solid
implementation boundaries
introduces challenges associated with extensibility and
cross-application connectivity
many of such applications remained in modernized technical
environment as legacy applications

Solution The large business problem can be broken down into
a set of smaller, related problems

functional decomposition is essentially a divide & conquer
methodology
for each separated sub-part a solution logic can be built

Jan Jusko Service Oriented Architecture & Design Patterns



Functional Decomposition (II)

Application Service oriented analysis is used to decompose
the large problem

service-oriented approach to functional decomposition differs
from other distributed approaches in the manner in which
separation is achieved

Impacts The ownership of multiple smaller programs can
result in increased design complexity

each sub-logic requires an individual attention to ensure the
reliability, security, maintenance, etc.
effectiveness of this pattern is limited by the quality of the
problem definition
if it is to be properly decomposed it needs to be documented
in an accurate way with appropriate granularity

Jan Jusko Service Oriented Architecture & Design Patterns



Service Encapsulation

Problem Solution logic designed for a single application
environment is typically limited in its potential to interoperate
with other parts of an enterprise

logic decomposition only splits the original problem, however
these subproblems remain restricted to the application domain
this introduces redundancy within the enterprise, inefficient
application delivery, complex and expensive integration, etc.

Solution Solution logic can be encapsulated by a service so
that it is capable of functioning beyond the boundary for
which it is initially delivered

sub-logic extracted from the process can be encapsulated as a
service
the logic can serve as a basis for a new service or be
incorporated into an existing service

Jan Jusko Service Oriented Architecture & Design Patterns



Service Encapsulation (II)

Application Solution logic suitable for service encapsulation
needs to be identified

Does the logic contain functionality that is useful to parts of
the enterprise outside of the immediate application boundary?
Does logic designed to leverage enterprise resources also have
the potential to become an enterprise resource?
Does the implementation of the logic impose hard constraints
that make it impractical or impossible to position the logic as
an effective enterprise resource?

Impacts None immediate

Jan Jusko Service Oriented Architecture & Design Patterns



Redundant Implementation

Problem A service that is being actively reused introduces a
potential single point of failure

Solution Reusable services can be deployed via redundant
implementations

Application The same service implementation is redundantly
deployed or supported by infrastructure with redundancy
features

different redundant implementation can be deployed for
different sets of consumers
one service implementation is designated as official, and the
underling technology architecture supports backups (load
balancing)

Impact Extra effort is required to keep all redundant
implementations in sync

Jan Jusko Service Oriented Architecture & Design Patterns



Service Facade

Problem The coupling of the core service logic to contracts
and implementation resources can inhibit its evolution

processing logic can evolve with time — if the processing logic
changes its interface, so changes the service contract
one processing logic needs to support several contracts, thus
needs additional decision logic for processing inputs from
various clients
service functionality might be decomposed

Solution A service facade component is used to abstract a
part of the service architecture

Jan Jusko Service Oriented Architecture & Design Patterns



Service Facade (II)

Application A separate facade component is incorporated
into the service design

it is responsible for providing supplemental/intermediate
processing support
it is separated into a separate logic within the process
relying logic, broker logic, behavior correction
facade components can be placed in different places within the
service architecture (including a separate service)
facade is typically tightly coupled with the contract and
enables to processing logic do be loosely coupled

Impact The addition of the facade component introduces
design effort and performance overhead

Jan Jusko Service Oriented Architecture & Design Patterns



Legacy Wrapper

Problem Legacy application often require non-standard
service contract with high technology coupling

Solution A wrapper service with standardized contract is
created which eliminates legacy technical details

Application A custom service contract and required service
logic need to be implemented

Impact Added layer of processing with associated
performance overhead

Jan Jusko Service Oriented Architecture & Design Patterns


