
A4M33AOS – Architektury orientované na služby

1. Introduction

Jiří Vokřínek

Agent Technology Center
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

vokrinek@agents.felk.cvut.cz http://agent.felk.cvut.cz

http://www.youtube.com/watch?v=sbd_1G8Kqjs&feature=channel
http://www.youtube.com/watch?v=dyHWAiG6c-Y&feature=channel

Service-oriented Architecture

 is a flexible set of design principles used
during the phases of systems development and
integration

 provide a loosely-integrated suite of services
that can be used within multiple business
domains

 defines how to integrate widely disparate
applications for a world that is distributed and
uses multiple implementation platforms

Service-oriented Architecture

 defines the interface in terms of protocols and
functionality

 requires loose coupling of services with
operating systems, and other technologies that
underlie applications

 separates functions into distinct units, or
services, which developers make accessible
over a network

Services

 allow users to combine and reuse them in the
production of applications

 services and their corresponding consumers
communicate with each other by passing data
in a well-defined, shared format, or by
coordinating an activity between two or more
services

Services

 implementations rely on a mesh of software
services

 services comprise unassociated, loosely coupled
units of functionality that have no calls to
each other embedded in them

 each service implements one action

 instead of services embedding calls to each other
in their source code they use defined protocols
that describe how services pass and parse
messages, using description metadata

Principles

 reuse, granularity, modularity, composability,
componentization and interoperability

 standards compliance (both common and
industry-specific)

 services identification and categorization,
provisioning and delivery, and monitoring and
tracking

Principles

 service encapsulation – many services are
consolidated for use under the SOA; often such
services were not planned to be under SOA

 service loose coupling – services maintain a
relationship that minimizes dependencies and only
requires that they maintain an awareness of each
other

 service contract – services adhere to a
communications agreement, as defined collectively
by one or more service-description documents

Principles

 service abstraction – beyond descriptions in the
service contract, services hide logic from the
outside world

 service reusability – logic is divided into
services with the intention of promoting reuse

 service composability – collections of services
can be coordinated and assembled to form
composite services

 service autonomy – services have control over
the logic they encapsulate

Additional Constraints

 stateless service – each message that a
consumer sends to a provider must contain all
necessary information for the provider to process
it. This is effectively "service in mass production"
since each request can be treated as generic.
There are no intermediate states to worry
about, so recovery from partial failure is also
relatively easy. This makes a service more
reliable.

Additional Constraints

 stateful service – holds a session between a
consumer and a provider. Stateful services
require both the consumer and the provider to
share the same consumer-specific context.
The drawback of this constraint is that it may
reduce the overall scalability of the service
provider because it may need to remember the
shared context for each consumer.

Additional Constraints

 idempotent request – duplicate requests
received by a service have the same effects as a
unique request. This constraint allows providers
and consumers to improve the overall service
reliability by simply repeating the request if faults
are encountered.

