
Modified: Mon Dec 12 2011, 22:25:17
Humla v0.2.2

Middleware and Web Services
Lecture 8: HATEOAS, Scalability and Description

doc. Ing. Tomáš Vitvar, Ph.D.
tomas@vitvar.com • @TomasVitvar • http://vitvar.com

Czech Technical University in Prague
Faculty of Information Technologies • Software and Web Engineering • http://vitvar.com/courses/mdw

REST Core Principles

REST architectural style defines constraints
‒ if you follow them, they help you to achieve a good design,

interoperability and scalability.
Constraints
‒ Client/Server
‒ Statelessness
‒ Cacheability
‒ Layered system
‒ Uniform interface
Guiding principles
‒ Identification of resources
‒ Representations of resources and self-descriptive messages
‒ Hypermedia as the engine of application state (HATEOAS)

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 2 ‒



Overview

HATEOAS
‒ Stateful vs. Stateless
‒ Links and Preconditions
Scalability
Description

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 3 ‒

HATEOAS

HATEOAS = Hypertext as the Engine for
Application State
‒ The REST core principle
‒ Hypertext
→ Hypertext is a representation of a resource with links
→ A link is an URI of a resource
→ Applying an access to a resource via its link = state

transition
Statelessness
‒ A service does not use a memory to remember a state
‒ HATEOAS enables stateless implementation of services

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 4 ‒



Overview

HATEOAS
‒ Stateful vs. Stateless
‒ Links and Preconditions
Scalability
Description

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 5 ‒

Stateful server
Sessions to store the application state
‒ See a state management and a stateful public process
‒ The app uses a server memory to remember the app's state
‒ when server restarts, the app state is lost

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 6 ‒



Stateless server
HTTP and hypermedia to transfer the app state
‒ Does not use a server memory to remember the app state
‒ State transferred between a client and a service via HTTP metadata and

resources' representations

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 7 ‒

Persistent Storage and Session Memory

Persistent Storage
‒ Contains app data
‒ Data is serialized into resource representation formats
‒ All sessions may access the data via resource IDs
‒ Note
→ Our simple examples implement a storage in a server

memory!
Session Memory
‒ Server memory that contains a state of the app
‒ A session may only access its session memory
‒ Access through cookies
‒ Note
→ A session memory may be implemented via a persistent

storage (such as in GAE)

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 8 ‒



Overview

HATEOAS
‒ Stateful vs. Stateless
‒ Links and Preconditions
Scalability
Description

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 9 ‒

Link

Service operation
‒ Applying an access to a link (GET, PUT, POST, DELETE)
‒ Link: HTTP method + resource URI + optional link semantics
Example: getOrder and addItem

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 10 ‒



Atom Links

Atom Syndication Format
‒ XML-based document format; Atom feeds
‒ Atom links becoming popular for RESTful applications

‒ Link structure
rel – name of the link
~ semantics of an operation behind the link
href – URI to the resource described by the link
type – media type of the resource the link points to

1
2
3
4
5
6
7
8

<order8a:xmlns="http://www.w3.org/2005/Atom"8xmlns="...">
8888<a:link
88888888rel="next"
88888888href="http://company.com/orders/5543"
88888888type="application/xml"/>
8888<customer>Tomas</customer>
8888<items>...</items>
</order>

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 11 ‒

Link Semantics

Standard rel values
‒ Navigation: next, previous, self
‒ Does not reflect a HTTP method you can use
Extension rel values
‒ You can use rel to indicate a semantics of an operation
‒ Example: add item, delete order, update order, etc.
‒ A client associates this semantics with an operation it may apply

at a particular state
‒ The semantics should be defined by using an URI

1
2
3
4
5
6
7

<order8a:xmlns="http://www.w3.org/2005/Atom"8xmlns="...">
8888<id>2324</id>
8888<a:link8rel="http://company.com/op/addItem"
88888888href="http://company.com/orders/2324"/>
8888<a:link8rel="http://company.com/op/deleteOrder"
88888888href="http://company.com/orders/2324"/>
</order>

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 12 ‒



Pagination

Dividing a resource into a number of pages
‒ A client retrieves a resource in pages to optimize interactions
‒ Example: /orders?page={startPage}&size={numberReturned}
‒ A client needs to ask for (or have default values for) a start page

and a number of orders to return (must have a pre-defined
knowledge)

Example /orders resource:

‒ client does not need to remember which page of orders it is
viewing

1
2
3
4
5

<orders8a:xmlns="http://www.w3.org/2005/Atom"8xmlns="...">
8888<order>...</order>
8888<a:link8rel="next"8href="http://company.com/orders?page=2&size=10"/>
8888<a:link8rel="last"8href="http://company.com/orders?page=10&size=10"/>
</order>

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 13 ‒

Link Headers

An alternative to Atom links in resource representations
‒ links defined in HTTP Link header, Web Linking IETF spec
‒ They have the same semantics as Atom Links
‒ Example:

Advantages
‒ no need to get the entire document
‒ no need to parse the document to retrieve links
‒ use HTTP HEAD only

>8HEAD8/orders8HTTP/1.1
8
<8ContentWType:8application/xml
<8Link:8<http://company.com/orders/?page=2&size=10>;8rel="next"
<8Link:8<http://company.com/orders/?page=10&size=10>;8rel="last"

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 14 ‒



Preconditions and HATEOAS
Precondition
‒ Recall preconditions and effects from Lecture 4.
→ A conditions that must hold in a state before an operation can be

executed.
Preconditions in HATEOAS
‒ Service in a current state generates only valid transitions that it includes

in the representation of the resource.
‒ Transition logic is realized at the server-side

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 15 ‒

Advantages

Location transparency
‒ only "entry-level" links published to the World
‒ other links within documents can change without changing

client's logic
‒ HATEOAS may reflect current user's rights in the app
Loose coupling
‒ no need for a logic to construct the links
‒ Clients know to which states they can move via links

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 16 ‒



Overview

HATEOAS
Scalability
‒ Caching and Revalidation
‒ Concurrency Control
Description

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 17 ‒

Scalability

Need for scalability
‒ Huge amount of requests on the Web every day
‒ Huge amount of data downloaded
Some examples
‒ Google, Facebook: 5 billion API calls/day
‒ Twitter: 3 billions of API calls/day (75% of all the traffic)
→ 50 million tweets a day

‒ eBay: 8 billion API calls/month
‒ Bing: 3 billion API calls/month
‒ Amazon WS: over 100 billion objects stored in S3
Scalability in REST
‒ Caching and revalidation
‒ Concurrency control

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 18 ‒



Overview

HATEOAS
Scalability
‒ Caching and Revalidation
‒ Concurrency Control
Description

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 19 ‒

Caching

Your service should cache:
‒ anytime there is a static resource
‒ even there is a dynamic resource
→ with chances it updates often
→ you can force clients to always revalidate

three steps:
‒ client GETs the resource representation
‒ server controls how it should cache through CacheWControl header
‒ client revalidates the content via conditional GET

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 20 ‒



Cache Headers
CacheWControl response header
‒ controls over local and proxy caches
‒ private – no proxy should cache, only clients can
‒ public – any intermediary can cache (proxies and clients)
‒ noWcache – the response should not be cached. If it is cached, the content

should always be revalidated.
‒ noWstore – can cache but should not store persistently. When a client

restarts, content is lost
‒ noWtransform – no transformation of cached data; e.g. compressions
‒ maxWage, sWmaxage a time in seconds how long the cache is valid; sW
maxage for proxies

LastWModified and ETag response headers
‒ Content last modified date and a content entity tag
IfWModifiedWSince and IfWNoneWMatch request headers
‒ Content revalidation (conditional GET)

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 21 ‒

Example Date Revalidation
Cache control example:

‒ only client can cache, must not be stored on the disk, the cache is valid
for 200 seconds.

Revalidation (conditional GET) example:
‒ A client revalidates the cache after 200 seconds.

>8GET8/orders8HTTP/1.1
>8...
8
<8HTTP/1.182008OK
<8ContentWType:8application/xml
<8CacheWControl:8private,8noWstore,8maxWage=200
<8LastWModified:8Sun,878Nov82011,809:408CET
<
<8...data...

>8GET8/orders8HTTP/1.1
>8IfWModifiedWSince:8Sun,878Nov82011,809:408CET
8
<8HTTP/1.183048Not8Modified
<8CacheWControl:8private,8noWstore,8maxWage=200
<8LastWModified:8Sun,878Nov82011,809:408CET

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 22 ‒



Entity Tags
Signature of the response body
‒ A hash such as MD5
‒ A sequence number that changes with any modification of the content
Types of tag
‒ Strong ETag: reflects the content bit by bit
‒ Weak ETag: reflects the content "semantically"
→ The app defines the meaning of its weak tags

Example content revalidation with ETag
<8HTTP/1.182008OK
<8CacheWControl:8private,8noWstore,8maxWage=200
<8LastWModified:8Sun,878Nov82011,809:408CET
<8ETag:8"4354a5f6423b43a54d"
8
>8GET8/orders8HTTP/1.1
>8IfWNoneWMatch:8"4354a5f6423b43a54d"
8
<8HTTP/1.183048Not8Modified
<8CacheWControl:8private,8noWstore,8maxWage=200
<8LastWModified:8Sun,878Nov82011,809:408CET
<8ETag:8"4354a5f6423b43a54d"

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 23 ‒

Design Suggestions

Composed resources use weak ETags
‒ For example /orders
→ a composed resource that contains a summary information
→ changes to an order's items will not change semantics of

/orders
‒ It is usually not possible to perform updates on these resources
Non-composed resources use strong ETags
‒ For example /orders/{orderWid}
‒ They can be updated
Further notes
‒ Server should send both LastWModified and ETag headers
‒ If client sends both IfWModifiedWSince and IfWNoneWMath,
ETag validation takes preference

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 24 ‒



Weak ETag Example
App specific, /orders resource example

Weak ETag compute function example
‒ Any modification to an order's items is not significant for /orders:

1
2
3
4
5
6
7
8
9
10
11
12
13

{8
8888"orders"8:8
88888888[
888888888888{8"id"88888888:82245,
88888888888888"customer"88:8"Tomas",
88888888888888"descr"88888:8"Stuff8to8build8a8house.",
88888888888888"items"88888:8[...]8},
888888888888{8"id"88888888:85546,
88888888888888"customer"88:8"Peter",
88888888888888"descr"88888:8"Things8to8build8a8pipeline.",
88888888888888"items"88888:8[...]8}
88888888]8
}

1
2
3
4
5
6
7
8

var8crypto8=8require("crypto");
8
function8computeWeakETag(orders)8{
8888var8content8=8"";
8888for8(var8i8=80;8i8<8orders.length;8i++)
88888888content8+=8orders[i].id8+8orders[i].customer8+8orders[i].descr;
8888return8crypto.createHash('md5').update(content).digest("hex");
}

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 25 ‒

Weak ETag Revalidation
Updating /orders resource
‒ POST8/orders/{orderWid} inserts a new item to an order
‒ Any changes to orders' items will not change the Weak ETag

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 26 ‒



Overview

HATEOAS
Scalability
‒ Caching and Revalidation
‒ Concurrency Control
Description

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 27 ‒

Concurrency
Two clients may update the same resource
1) a client GETs a resource GET8/orders/5545
2) the client modifies the resource
3) the client updates the resource via PUT8/orders/55458HTTP/1.1
What happens if another client updates the resource between 1) and 3) ?
Concurrency control
‒ Conditional PUT
→ Update the resource only if it has not changed since a specified date

or a specified ETag matches the resource content
‒ IfWUnmodifiedWSince and IfWMatch headers
‒ Response to conditional PUT:
→ 2008OK if the PUT was successful
→ 4128Precondition8Failed if the resource was updated in the

meantime.

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 28 ‒



Concurrency Control Protocol

Conditional PUT and ETags
‒ Conditional PUT must always use strong entity tags or date validation

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 29 ‒

Overview

HATEOAS
Scalability
Description
‒ Documentation
‒ Service Description and Characteristics

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 30 ‒



Documentation

RESTful API Documentation
‒ not a standard way, only good practices
‒ only textual, not in a formal language
→ there are attempts such as WADL, hREST
→ it is even possible to use WSDL 2.0

Client libraries in major languages
‒ JavaScript, Java, ...
‒ these could be documented
‒ they hide protocol details
Best practices in RESTful API documentation
‒ learn from Google, Twitter, and others

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 31 ‒

Best Practices

Include resource diagram
‒ in UML, with links
For each resource, describe
‒ URI with parameters, such as
http://company.com/orders/{orderWid}

‒ definition of the parameters
‒ list of properties (attributes), with values, link to XML Schema
‒ representations you support (XML, JSON)
‒ sample request
‒ sample response in representations you support
‒ error codes
Make sure
‒ people can copy sample code and run it in a browser or by using
curl

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 32 ‒



Overview

HATEOAS
Scalability
Description
‒ Documentation
‒ Service Description and Characteristics

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 33 ‒

Description

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 34 ‒



Service Characteristics and REST

Loose coupling
‒ Standard response codes
‒ Standard Internet Media Types
‒ Links in hypertext; clients follow links while they do not need to

construct them
Reusability
‒ Multiple representations of resources (XML, JSON, ...)
‒ Interoperability promoted by uniform interface
Contracting
‒ XML Schema (structural)
‒ Internet Media Types, vendor specific types

such as application/vnd.order+xml
‒ Uniform interface
‒ Hypermedia (behavioral – HATEOAS)

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 35 ‒

Service Characteristics and REST (Cont.)

Discoverability and Composability
‒ Mostly manual, partial support of directories such as

ProgrammableWeb
‒ Compositions realized programmatically in mashups
‒ Research efforts to semi-automate discovery and composition
Abstraction
‒ Heavily based on HTTP, can be realized in any implementation

technologies due to a wide spread of HTTP
Encapsulation
‒ Design-specific

Lecture 8: HATEOAS, Scalability and Description, CTU Winter Semester 2011/2012,  @TomasVitvar ‒ 36 ‒


