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Inštrukce

1. Vygenerujte trénovaćı data (zvolte si: spojitá/diskrétńı/booleovská) a
vyberte si vhodný klasifikátor.

2. Implementujte odhad chyby pomoćı metod ”k-fold cross validation” a
”.632 Bootstrap” (Hastie et al: ”The Elements of Statistical Learning”
nebo http://www-group.slac.stanford.edu/sluo/lectures/stat_
lecture_files/sluo2006lec7.pdf).

3. Odhadněte chybu pomoćı obou metod pro r̊uzné velikosti datasetu a
porovnejte s odhadem chyby na dostatečně velké nezávislé testovaćı
množině.

Cross-validation

Consider what to do when the amount of data for training and testing is
limited. The holdout method reserves a certain amount for testing and uses
the remainder for training (and sets part of that aside for validation, if requi-
red). In practical terms, it is common to hold out one-third of the data for
testing and use the remaining two-thirds for training.

Of course, you may be unlucky: the sample used for training (or testing)
might not be representative. In general, you cannot tell whether a sample is
representative or not. But there is one simple check that might be worthwhile:
each class in the full dataset should be represented in about the right pro-
portion in the training and testing sets. If, by bad luck, all examples with
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a certain class were missing from the training set, you could hardly expect
a classifier learned from that data to perform well on the examples of that
class — and the situation would be exacerbated by the fact that the class
would necessarily be overrepresented in the test set because none of its in-
stances made it into the training set! Instead, you should ensure that the
random sampling is done in such a way as to guarantee that each class is
properly represented in both training and test sets. This procedure is called
stratification, and we might speak of stratified holdout . Although it is ge-
nerally well worth doing, stratification provides only a primitive safeguard
against uneven representation in training and test sets.

A more general way to mitigate any bias caused by the particular sample
chosen for holdout is to repeat the whole process, training and testing, several
times with different random samples. In each iteration a certain proportion
— say two-thirds — of the data is randomly selected for training, possibly
with stratification, and the remainder used for testing. The error rates on
the different iterations are averaged to yield an overall error rate. This is the
repeated holdout method of error rate estimation.

In a single holdout procedure, you might consider swapping the roles of
the testing and training data — that is, train the system on the test data and
test it on the training data — and average the two results, thus reducing the
effect of uneven representation in training and test sets. Unfortunately, this
is only really plausible with a 50 : 50 split between training and test data,
which is generally not ideal — it is better to use more than half the data for
training even at the expense of test data. However, a simple variant forms the
basis of an important statistical technique called cross − validation. In cross-
validation, you decide on a fixed number of folds , or partitions of the data.
Suppose we use three. Then the data is split into three approximately equal
partitions and each in turn is used for testing and the remainder is used
for training. That is, use two-thirds for training and one-third for testing
and repeat the procedure three times so that, in the end, every instance has
been used exactly once for testing. This is called threefold cross − validation,
and if stratification is adopted as well — which it often is — it is stratified
threefold cross − validation.

The standard way of predicting the error rate of a learning technique
given a single, fixed sample of data is to use stratified 10-fold cross-validation.
The data is divided randomly into 10 parts in which the class is represented
in approximately the same proportions as in the full dataset. Each part is
held out in turn and the learning scheme trained on the remaining nine-
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tenths; then its error rate is calculated on the holdout set. Thus the learning
procedure is executed a total of 10 times on different training sets (each of
which have a lot in common). Finally, the 10 error estimates are averaged to
yield an overall error estimate.

Why 10? Extensive tests on numerous datasets, with different learning
techniques, have shown that 10 is about the right number of folds to get
the best estimate of error, and there is also some theoretical evidence that
backs this up. Although these arguments are by no means conclusive, and
debate continues to rage in machine learning and data mining circles about
what is the best scheme for evaluation, 10-fold cross-validation has become
the standard method in practical terms. Tests have also shown that the
use of stratification improves results slightly. Thus the standard evaluation
technique in situations where only limited data is available is stratified 10-
fold cross-validation. Note that neither the stratification nor the division into
10 folds has to be exact: it is enough to divide the data into 10 approximately
equal sets in which the various class values are represented in approximately
the right proportion. Statistical evaluation is not an exact science. Moreover,
there is nothing magic about the exact number 10: 5-fold or 20-fold cross-
validation is likely to be almost as good.

A single 10-fold cross-validation might not be enough to get a reliable
error estimate. Different 10-fold cross-validation experiments with the same
learning method and dataset often produce different results, because of the
effect of random variation in choosing the folds themselves. Stratification
reduces the variation, but it certainly does not eliminate it entirely.When
seeking an accurate error estimate, it is standard procedure to repeat the
cross-validation process 10 times — that is, 10 times 10-fold cross-validation
— and average the results. This involves invoking the learning algorithm 100
times on datasets that are all nine-tenths the size of the original. Obtaining
a good measure of performance is a computation-intensive undertaking.

.632 Bootstrap

The bootstrap method is based on the statistical procedure of sampling with
replacement . Previously, whenever a sample was taken from the dataset to
form a training or test set, it was drawn without replacement. That is, the
same instance, once selected, could not be selected again. It is like picking
teams for football: you cannot choose the same person twice. But dataset
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instances are not like people. Most learning methods can use the same in-
stance twice, and it makes a difference in the result of learning if it is present
in the training set twice. (Mathematical sticklers will notice that we should
not really be talking about ”sets” at all if the same object can appear more
than once.)

The idea of the bootstrap is to sample the dataset with replacement to
form a training set. We will describe a particular variant, mysteriously (but
for a reason that will soon become apparent) called the 0 .632 bootstrap.
For this, a dataset of n instances is sampled n times, with replacement, to
give another dataset of n instances. Because some elements in this second
dataset will (almost certainly) be repeated, there must be some instances
in the original dataset that have not been picked: we will use these as test
instances.

What is the chance that a particular instance will not be picked for the
training set? It has a 1/n probability of being picked each time and there-
fore a 1 − 1/n probability of not being picked. Multiply these probabilities
together according to the number of picking opportunities, which is n, and
the result is a figure of(

1 − 1
n

)n
= e−1 = 0.368

(where e is the base of natural logarithms, 2.7183, not the error rate!).
This gives the chance of a particular instance not being picked at all. Thus
for a reasonably large dataset, the test set will contain about 36.8% of the
instances and the training set will contain about 63.2% of them (now you
can see why it’s called the 0 .632 bootstrap). Some instances will be repeated
in the training set, bringing it up to a total size of n, the same as in the
original dataset.

The figure obtained by training a learning system on the training set and
calculating its error over the test set will be a pessimistic estimate of the
true error rate, because the training set, although its size is n, nevertheless
contains only 63% of the instances, which is not a great deal compared, for
example, with the 90% used in 10-fold cross-validation. To compensate for
this, we combine the test-set error rate with the resubstitution error on the
instances in the training set. The resubstitution figure, as we warned earlier,
gives a very optimistic estimate of the true error and should certainly not be
used as an error figure on its own. But the bootstrap procedure combines it
with the test error rate to give a final estimate e as follows:

e = 0.632 × etest−instances + 0.368 × etraining−instances

Then, the whole bootstrap procedure is repeated several times, with dif-
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ferent replacement samples for the training set, and the results averaged.
The bootstrap procedure may be the best way of estimating error for very

small datasets.However, like leave-one-out cross-validation, it has disadvan-
tages that can be illustrated by considering a special, artificial situation. In
fact, the very dataset we considered previously will do: a completely random
dataset with two classes. The true error rate is 50% for any prediction rule.
But a scheme that memorized the training set would give a perfect resubsti-
tution score of 100% so that etraining−instances = 0, and the 0.632 bootstrap
will mix this in with a weight of 0.368 to give an overall error rate of only
31.6% (0.632 × 50% + 0.368 × 0%), which is misleadingly optimistic.

5


