Practising for the first half of M33SAD

1. Figure 1 depicts input data for clustering. Figures 2 and 3 correspond to clustering using kmeans (with Euclidean distance) and using hierachical clustering (single linkage, Euclidean distance). Choose which of the figures corresponds to algorithm k-means and which to hierarchical clustering.

Obrázek 1: Vstupní data

Obrázek 2

Obrázek 3
2. Estimate parameters of the mixture of 2 gaussians using EM algorithm. The density of mixture is given by: $f(x, \vartheta)=\alpha N\left(x ; \mu_{1}, \sigma_{1}{ }^{2}\right)+(1-\alpha) N\left(x ; \mu_{2} \sigma_{2}{ }^{2}\right)$. Figures shown below illustrate steps of EM algorithm (the horizontal axis corresponds to parameter x, the vertical axis to value of probability density, observations are marked by crosses). A random initialization step (init), a first optimalization step (step1) are shown in 2 of the figures below. The third figure is an additional unrelated figure. Figures are ordered randomly. Choose which of the figures corresponds to the mentioned steps: init and step1. Explain.

3. Let us have a transaction database. Let us assume that the only frequent itemsets of size 3 are the following: $\{a, b, c\},\{a, b, d\},\{b, c, d\},\{a, c, d\},\{b, c, e\}$. Decide which of the following itemsets cannot be frequent: $\{a, b, c, d\},\{a, b, c, e\},\{b, c, d, e\}$.
4. Let us have a transaction database shown in Table 1. Find all of the association rules with support at least 50% and confidence more than 60%.

Transaction	Items
T1	beer, bread
T2	bread, peanut butter
T3	beer, milk
T4	bread, jam, peanut butter
T5	bread, milk, peanut butter

Table 1
5. Let us have an alphabet of two symbols $\{a, b\}$. Let us assume the task of undirected sequence mining. Answer the following questions:

- How many different undirected sequences of length 3 are there?
- Sketch how you would generate different sequences of length 4. Show at least one duplicate sequence of length 4.
- In case of sequences of length 3 you have assured that the only frequent sequences are $\{a a b, b a b, b b b\}$. Which sequences of length 4 can be still frequent? Why?

