Markov Logic And other SRL Approaches

Overview

- Statistical relational learning
- Markov logic
- Basic inference
- Basic learning

Statistical Relational Learning

Goals:

- Combine (subsets of) logic and probability into a single language
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems
L. Getoor \& B. Taskar (eds.), Introduction to Statistical Relational Learning, MIT Press, 2007.

Plethora of Approaches

- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models
[Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson \& Domingos, 2006]
- And many others!

Key Dimensions

- Logical language First-order logic, Horn clauses, frame systems
- Probabilistic language

Bayes nets, Markov nets, PCFGs

- Type of learning
- Generative / Discriminative
- Structure / Parameters
- Knowledge-rich / Knowledge-poor
- Type of inference
- MAP / Marginal
- Full grounding / Partial grounding / Lifted

Markov Logic: Intuition

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints: When a world violates a formula, It becomes less probable, not impossible
- Give each formula a weight (Higher weight \Rightarrow Stronger constraint)
$\mathrm{P}($ world $) \propto \exp \left(\sum\right.$ weights of formulas it satisfies $)$

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
- F is a formula in first-order logic
- w is a real number
- Together with a set of constants, it defines a Markov network with
- One node for each grounding of each predicate in the MLN
- One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Example: Friends \& Smokers

Smoking causes cancer.
Friends have similar smoking habits.

Example: Friends \& Smokers

$\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$ $\forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Example: Friends \& Smokers

$1.5 \forall x$ Smokes $(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Example: Friends \& Smokers

$1.5 \forall x$ Smokes $(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

Example: Friends \& Smokers

$1.5 \forall x$ Smokes $(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

Cancer(A)

Example: Friends \& Smokers

$1.5 \forall x$ Smokes $(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)
Friends (A, B)

Example: Friends \& Smokers

$1.5 \forall x$ Smokes $(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)
Friends (A, B)

Example: Friends \& Smokers

$1.5 \forall x$ Smokes $(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world x :

$$
\begin{aligned}
& P(x)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(x)\right) \\
& \text { Weight of formula } i \quad \text { No. of true groundings of formula } i \text { in } x
\end{aligned}
$$

- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains

Relation to Statistical Models

- Special cases:
- Markov networks
- Markov random fields
- Bayesian networks
- Log-linear models
- Exponential models
- Max. entropy models
- Gibbs distributions
- Boltzmann machines
- Logistic regression
- Hidden Markov models
- Conditional random fields
- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

Relation to First-Order Logic

- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights \Rightarrow Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

MAP Inference

- Problem: Find most likely state of world given evidence

$$
\underset{y}{\arg \max } P(y \mid x)
$$

MAP Inference

- Problem: Find most likely state of world given evidence

$$
\underset{y}{\arg \max } \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y)\right)
$$

MAP Inference

- Problem: Find most likely state of world given evidence

$$
\underset{y}{\arg \max } \sum_{i} w_{i} n_{i}(x, y)
$$

MAP Inference

- Problem: Find most likely state of world given evidence

$$
\underset{y}{\arg \max } \sum_{i} w_{i} n_{i}(x, y)
$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
(e.g., MaxWalkSAT [Kautz et al., 1997]

The MaxWalkSAT Algorithm

for $i \leftarrow 1$ to max-tries do
solution = random truth assignment for $j \leftarrow 1$ to max-flips do
if \sum weights(sat. clauses) $>$ threshold then return solution
$c \leftarrow$ random unsatisfied clause with probability p
flip a random variable in c else
flip variable in c that maximizes
Σ weights(sat. clauses)
return failure, best solution found

Computing Probabilities

- $\mathrm{P}($ Formula|MLN,C) $=$?
- Brute force: Sum probs. of worlds where formula holds
- MCMC: Sample worlds, check formula holds
- P(Formula1|Formula2,MLN,C) = ?
- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives

Learning

- Data is a relational database
- For now: Closed world assumption (if not: EM)
- Learning parameters (weights)
- Similar to learning weights for Markov networks
- Learning structure (formulas)
- A form of inductive logic programming
- Also related to learning features for Markov nets

Weight Learning

- Parameter tying: Groundings of same clause

$$
\frac{\partial}{\partial w_{i}} \log P_{w}(x)=\underset{n_{i}(x)}{n_{w}}-E_{w}\left[n_{i}(x)\right]
$$

Expected no. times clause i is true according to MLN

- Generative learning: Pseudo-likelihood
- Discriminative learning: Cond. likelihood, use MaxWalkSAT for inference

Alchemy

Open-source software including:

- Full first-order logic syntax
- Inference (MAP and conditional probabilities)
- Weight learning (generative and discriminative)
- Structure learning
- Programming language features alchemy.cs.washington.edu

