Markov Logic And other SRL Approaches

Overview

- Statistical relational learning
- Markov logic
- Basic inference
- Basic learning

Statistical Relational Learning

Goals:

- Combine (subsets of) logic and probability into a single language
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems

L. Getoor & B. Taskar (eds.), *Introduction to Statistical Relational Learning,* MIT Press, 2007.

Plethora of Approaches

- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson & Domingos, 2006]
- And many others!

Key Dimensions

- Logical language First-order logic, Horn clauses, frame systems
- Probabilistic language Bayes nets, Markov nets, PCFGs
- Type of learning
 - Generative / Discriminative
 - Structure / Parameters
 - Knowledge-rich / Knowledge-poor
- Type of inference
 - MAP / Marginal
 - Full grounding / Partial grounding / Lifted

Markov Logic: Intuition

- A logical KB is a set of **hard constraints** on the set of possible worlds
- Let's make them soft constraints: When a world violates a formula, It becomes less probable, not impossible
- Give each formula a weight (Higher weight ⇒ Stronger constraint)

 $P(world) \propto exp(\sum weights of formulas it satisfies)$

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Smoking causes cancer.

Friends have similar smoking habits.

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: Anna (A) and Bob (B)

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: Anna (A) and Bob (B)

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Friends(A,B)

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Two constants: Anna (A) and Bob (B)

Friends(A,B)

1.1
$$|\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Two constants: **Anna** (A) and **Bob** (B)

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world *x*:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(x)\right)$$

Weight of formula *i* No. of true groundings of formula *i* in *x*

- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains

Relation to Statistical Models

- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Max. entropy models
 - Gibbs distributions
 - Boltzmann machines
 - Logistic regression
 - Hidden Markov models
 - Conditional random fields

- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

Relation to First-Order Logic

- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights ⇒
 Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

$$\underset{y}{\operatorname{arg\,max}} \frac{1}{Z_{x}} \exp\left(\sum_{i} w_{i} n_{i}(x, y)\right)$$

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al., 1997]

The MaxWalkSAT Algorithm

Computing Probabilities

- P(Formula|MLN,C) = ?
- Brute force: Sum probs. of worlds where formula holds
- MCMC: Sample worlds, check formula holds
- P(Formula1|Formula2,MLN,C) = ?
- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives

Learning

- Data is a relational database
- For now: Closed world assumption (if not: EM)
- Learning parameters (weights)
 - Similar to learning weights for Markov networks
- Learning structure (formulas)
 - A form of inductive logic programming
 - Also related to learning features for Markov nets

Weight Learning

Parameter tying: Groundings of same clause

- Generative learning: Pseudo-likelihood
- Discriminative learning: Cond. likelihood, use MaxWalkSAT for inference

Alchemy

Open-source software including:

- Full first-order logic syntax
- Inference (MAP and conditional probabilities)
- Weight learning (generative and discriminative)
- Structure learning
- Programming language features

alchemy.cs.washington.edu