Machine Learning and Data Analysis Lecture 9: Infinite Hypothesis Spaces

Filip Železný

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics
Intelligent Data Analysis lab
http://ida.felk.cvut.cz

January 10, 2011

PAC Learning Summary

Concept class (efficiently) PAC learnable by a hypothesis class if

- a consistent hypothesis can be (efficiently) produced for each sample
- size of hypothesis space at most exponential

Two weeks ago we proved PAC-learnability of threshold hypotheses on [0; 1]

Here PAC-learnability does not follow from the above principle since there are ∞ threshold hypotheses. Can we extend the above principle to cover infinite hypothesis classes?

An Intuitive Approach

Assume θ has finite precision, say 64 bits. In a digital machine, this is the case anyway.

For threshold hypotheses on $[0,1]$:

$$
\ln |\mathcal{F}|=\ln \left|2^{64}\right|=64 \ln 2
$$

For threshold hypotheses

$$
f(x)=1 \text { iff } \theta_{1} x^{(1)}+\theta_{2} x^{(2)}>0
$$

on $[0,1]^{2}$:

$$
\ln |\mathcal{F}|=\ln \left|2^{2 \cdot 64}\right|=128 \ln 2
$$

Generally for hypothesis classes with n parameters

$$
\ln |\mathcal{F}|=\ln \left|2^{64 n}\right|=64 n \ln 2=\mathcal{O}(n)
$$

An Intuitive Approach (cont'd)

$\ln |\mathcal{F}|$ linear in number of hypothesis-class parameters and precision of real-number representation

Approach seems viable, allows PAC-learning
Problem:

$$
\begin{array}{lll}
\mathcal{F}_{1}: & f(x)=1 \text { iff } \theta_{1} x^{(1)}+\theta_{2} x^{(2)}>0 & 2 \text { parameters } \\
\mathcal{F}_{2}: & f(x)=1 \text { iff }\left|\theta_{1}-\theta_{2}\right| x^{(1)}+\left|\theta_{3}-\theta_{4}\right| x^{(2)}>0 & 4 \text { parameters }
\end{array}
$$

Different number of parameters but $\mathcal{F}_{1}=\mathcal{F}_{2}$!
Instead of the number of parameters and precision, we will build a different characterization of infinite hypothesis classes.

$\Pi_{\mathcal{F}}$ function

A finite sample from P_{X} will be called an x-sample.

- x_{1}, x_{2}, \ldots instead of $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$

Remind the set-notation we earlier introduced for hypotheses:

- $x \in f$ means the same as $f(x)=1$

$\Pi_{\mathcal{F}}$ function

For any X and \mathcal{F} and a finite x-sample S define

$$
\Pi_{\mathcal{F}}(S)=\{f \cap S \mid f \in \mathcal{F}\}
$$

We call $f \cap S$ a labelling on $S . \Pi_{\mathcal{F}}(S)$ gives all labellings of S possible with hypotheses from \mathcal{F}

$\Pi_{\mathcal{F}}$ function: Example

Let \mathcal{F} be threshold hypotheses on $[0,1]$ and $S=\{0.3,0.7\}$

$$
\Pi_{\mathcal{F}}(S)=\{\{0.3,0.7\},\{0.7\},\{ \}\}
$$

but

$$
\{0.3\} \notin \Pi_{\mathcal{F}}(S)
$$

Shattering

Shattering

If $\left|\Pi_{\mathcal{F}}(S)\right|=2^{|S|}$ then S is shattered by \mathcal{F}.
S is shattered by \mathcal{F} if for any subset $S^{\prime} \subseteq S$ there is a hypothesis $f \in \mathcal{F}$ such that $f \cap S=S^{\prime}$.

Example: let \mathcal{F} be threshold hypotheses on $[0,1]$

- $\{0.3\}$ and $\{0.7\}$ are shattered by \mathcal{F}
- $\{0.3,0.7\}$ is not shattered by \mathcal{F}

VC Dimension

VC Dimension

The Vapnik-Chervonenkis dimension of \mathcal{F}, denoted $\mathcal{V}(\mathcal{F})$, is the largest d such that some x-sample of cardinality d is shattered by \mathcal{F}. If no such d exists, then $\mathcal{V}(\mathcal{F})=\infty$.

Example: let \mathcal{F} be threshold hypotheses on $[0,1]$

- $\{0.3\}$ is shattered by \mathcal{F}
- No x-sample S of cardinality 2 is shattered by \mathcal{F} because $\{\min S\} \subseteq S$, but $S \cap f=\{\min S\}$ for no $f \in \mathcal{F}$.
- Since no x-sample of cardinality 2 is shattered, no x-sample of cardinality >2 is shattered
- Therefore $\mathcal{V}(\mathcal{F})=1$.

VC Dimension: Examples

Let \mathcal{F} be intervals $[a, b], 0<a, b<1$

- $\{0.3,0.7\}$ is shattered by \mathcal{F}
- No x-sample of cardinality 3 or higher is shattered by \mathcal{F} because $\{\min S, \max S\} \subseteq S$ but $S \cap f=\{\min S, \max S\}$ for no $f \in \mathcal{F}$.
- Therefore $\mathcal{V}(\mathcal{F})=2$.

Two points shattered

No three points can be shattered, the middle one can never be left out

VC Dimension: Examples

Let \mathcal{F} be unions of k disjoint intervals $[a, b]$

- An x-sample of $2 k$ elements shattered by \mathcal{F}
- No x-sample of cardinality $2 k+1$ or higher is shattered by \mathcal{F}. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{2 k+1}\right\}$ such that $x_{i}<x_{j}$ for $i<j$. Then for

$$
S^{\prime}=\left\{x_{1}, x_{3}, \ldots x_{2 k+1}\right\}
$$

$S^{\prime} \subseteq S$ but $S^{\prime}=S \cap c$ for no $f \in \mathcal{F}$.

- Therefore $\mathcal{V}(\mathcal{F})=2 k$.

No $2 k+1$ points can be shattered

VC Dimension: Examples

Let \mathcal{F} be half-planes in R^{2}

- Some 3 points can be shattered (obvious)
- No 4 points can be shattered. Clear if three of them in line. If not, then two cases possible, and impossible labelling exists in each:
- $\mathcal{V}(\mathcal{F})=3$
- similarly shown: $\mathcal{V}\left(\right.$ circles in $\left.R^{2}\right)=3$
- Generally, \mathcal{V} (half-planes in $\left.R^{n}\right)=n+1$

VC Dimension: Examples

Let \mathcal{F} be rectangles in R^{2}

Some four points can be shattered

Five can never be shattered

- $\mathcal{V}(\mathcal{F})=4$
- More generally, \mathcal{V} (convex tetragons $)=9$
- More generally, $\mathcal{V}($ convex d-gons $)=2 d+1$

Function $G_{\mathcal{F}}$

Function $G_{\mathcal{F}}$

$$
G_{\mathcal{F}}(m)=\max \left\{\left|\Pi_{\mathcal{F}}(S)\right|:|S|=m\right\}
$$

For a given $m, G_{\mathcal{F}}(m)$ returns the maximum number of ways an x-sample of size m can be labeled by hypotheses from \mathcal{F}.

Function $\Phi(k, m)$

Define:

$$
\Phi(k, m)=\sum_{i=0}^{k}\binom{m}{i}=\left\{\begin{array}{l}
1 \text { if } k=0 \text { or } m=0 \\
\Phi(k, m-1)+\Phi(k-1, m-1)
\end{array}\right.
$$

The second equality may be shown by induction ('Pascal's triangle').
For $m>k$, it holds $0 \leq k / m<1$ and

$$
\begin{aligned}
&\left(\frac{k}{m}\right)^{k} \sum_{i=0}^{k}\binom{m}{i} \leq \sum_{i=0}^{k}\left(\frac{k}{m}\right)^{i}\binom{m}{i} \\
& \leq \sum_{i=0}^{m}\left(\frac{k}{m}\right)^{i}\binom{m}{i}=\left(1+\frac{k}{m}\right)^{m} \leq e^{k}
\end{aligned}
$$

Dividing by $\left(\frac{k}{m}\right)^{k}$, we get that $\Phi(k, m)$ grows polynomially in m

$$
\Phi(k, m) \leq e^{k}\left(\frac{m}{k}\right)^{k} \leq\left(\frac{m e}{k}\right)^{k}
$$

Bounding $G_{\mathcal{F}}(m)$ by $\Phi(\mathcal{V}(\mathcal{F}), m)$

We prove the polynomial bound

$$
G_{\mathcal{F}}(m) \leq \Phi(\mathcal{V}(\mathcal{F}), m)
$$

by induction on m and $\mathcal{V}(\mathcal{F})$.
Base case:

- if $m=0$ then

$$
G_{\mathcal{F}}(0)=1=\Phi(\mathcal{V}(\mathcal{F}), 0)
$$

since there is only one subset of $\}$.

- if $\mathcal{V}(\mathcal{F})=0$ then

$$
G_{\mathcal{F}}(m)=1=\Phi(0, m)
$$

since if only $\}$ can be shattered then all points in any x-sample must be labeled the same by any $f \in \mathcal{F}$.

Bounding $G_{\mathcal{F}}(m)$ by $\Phi(\mathcal{V}(\mathcal{F}), m)$ (cont'd)

 Induction step (assume an arbitrary S with m elements):$$
\left|\Pi_{\mathcal{F}}(S)\right|=\left|\Pi_{\mathcal{F}}(S \backslash\{x\})\right|+|\Delta \mathcal{S}|
$$

where by definition of the G function (slide 13) and then by the induction assumption

$$
\begin{equation*}
\left|\Pi_{\mathcal{F}}(S \backslash\{x\})\right| \leq G_{\mathcal{F}}(m-1) \leq \Phi(\mathcal{V}(\mathcal{F}), m-1) \tag{1}
\end{equation*}
$$

What about the difference term $|\Delta \mathcal{S}|$?

- For all $s \in \Pi_{\mathcal{F}}(S \backslash\{x\})$, there is 1 corresponding labelling (1) $s \in \Pi_{\mathcal{F}}(S)$
- For some $s \in \Pi_{\mathcal{F}}(S \backslash\{x\})$, there are 2 corresponding labellings
(1) $s \in \Pi_{\mathcal{F}}(S)$
(2) $s \cup\{x\} \in \Pi_{\mathcal{F}}(S)$

Thus $\Delta \mathcal{S}$ should include exactly the $s \in \Pi_{\mathcal{F}}(S \backslash\{x\})$ that have 2 corresponding labellings in $\Pi_{\mathcal{F}}(S)$.

Bounding $G_{\mathcal{F}}(m)$ by $\Phi(\mathcal{V}(\mathcal{F}), m)$ (cont'd)

Therefore:

$$
\Delta \mathcal{S}=\left\{s \in \Pi_{\mathcal{F}}(S) \mid x \notin s, s \cup\{x\} \in \Pi_{\mathcal{F}}(S)\right\}
$$

Note that

$$
\Delta \mathcal{S}=\Pi_{\Delta \mathcal{S}}(S \backslash\{x\})
$$

($\Delta \mathcal{S}$ in the subscript acts as a hypothesis class, which is OK!) Illustrative example with $\mathcal{F}=\{f \mid f(x)=1$ iff $x<\theta, \theta \in[0,1]\}$:

- $S=\{0.1,0.2,0.3\}, x=0.3$
- $\Pi_{\mathcal{F}}(S)=\{\{ \},\{0.1\},\{0.1,0.2\},\{0.1,0.2,0.3\}\}$
- $\Pi_{\mathcal{F}}(S \backslash\{x\})=\{\{ \},\{0.1\},\{0.1,0.2\}\}$
- $\Delta \mathcal{S}=\{\{0.1,0.2\}\}$
- $\Pi_{\Delta \mathcal{S}}(S \backslash\{x\})=\Pi_{\{\{0.1,0.2\}\}}(\{0.1,0.2\})=\{0.1,0.2\}=\Delta \mathcal{S}$

Bounding $G_{\mathcal{F}}(m)$ by $\Phi(\mathcal{V}(\mathcal{F}), m)$ (cont'd)

What about $\mathcal{V}(\Delta \mathcal{S})$?
(1) Remind definition: $\Delta \mathcal{S}=\left\{s \in \Pi_{\mathcal{F}}(S) \mid x \notin s, s \cup\{x\} \in \Pi_{\mathcal{F}}(S)\right\}$
(2) $\Delta \mathcal{S} \subseteq \Pi_{\mathcal{F}}(S)($ from 1$)$.
(3) Let T be a sample shattered by $\Delta \mathcal{S}$.
(3) $x \notin T$ (from 3 and 1)
(5) $|T \cup\{x\}|=|T|+1$ (from 4)
(c) For all $t \subseteq T, t \in \Delta \mathcal{S}$ (from 3)
(1) For all $t \subseteq T, t \in \Pi_{\mathcal{F}}(S)$ (from 6 and 2)
(8) For all $t \subseteq T, t \cup\{x\} \in \Pi_{\mathcal{F}}(S)$ (from 6 and 1)
(2) \mathcal{F} shatters $T \cup\{x\}$ (from 3,7, and 8)
(10) $\mathcal{V}(\mathcal{F}) \geq \mathcal{V}(\Delta \mathcal{S})+1$ (from 3 and 9$)$

Bounding $G_{\mathcal{F}}(m)$ by $\Phi(\mathcal{V}(\mathcal{F}), m)$ (cont'd)

Remind that

$$
\Delta \mathcal{S}=\Pi_{\Delta \mathcal{S}}(S \backslash\{x\})
$$

by definition of the G function (slide 13)

$$
\left|\Pi_{\Delta \mathcal{S}}(S \backslash\{x\})\right| \leq G_{\Delta \mathcal{S}}(m-1)
$$

we proved that

$$
\mathcal{V}(\Delta \mathcal{S}) \leq \mathcal{V}(\mathcal{F})-1
$$

by induction assumption

$$
G_{\Delta \mathcal{S}}(m-1) \leq \Phi(\mathcal{V}(\mathcal{F})-1, m-1)
$$

so

$$
\begin{equation*}
|\Delta \mathcal{S}|=\left|\Pi_{\Delta \mathcal{S}}(S \backslash\{x\})\right| \leq \Phi(\mathcal{V}(\mathcal{F})-1, m-1) \tag{2}
\end{equation*}
$$

Bounding $G_{\mathcal{F}}(m)$ by $\Phi(\mathcal{V}(\mathcal{F}), m)$ (cont'd)

Returning to the induction step:

$$
\left|\Pi_{\mathcal{F}}(S)\right|=\left|\Pi_{\mathcal{F}}(S \backslash x)\right|+|\Delta \mathcal{S}|
$$

We have proved (Eq. 1 and Eq. 2):

$$
\begin{aligned}
\left|\Pi_{\mathcal{F}}(S \backslash\{x\})\right| & \leq \Phi(\mathcal{V}(\mathcal{F}), m-1) \\
|\Delta \mathcal{S}| & \leq \Phi(\mathcal{V}(\mathcal{F})-1, m-1)
\end{aligned}
$$

Using the above and the definition of Φ (slide 14) we have

$$
\left|\Pi_{\mathcal{F}}(S)\right| \leq \Phi(\mathcal{V}(\mathcal{F}), m-1)+\Phi(\mathcal{V}(\mathcal{F})-1, m-1)=\Phi(\mathcal{V}(\mathcal{F}), m)
$$

Since S was arbitrary, we proved the polynomial bound for $G_{\mathcal{F}}(m)$:

$$
G_{\mathcal{F}}(m) \leq \Phi(\mathcal{V}(\mathcal{F}), m)
$$

Error regions

Denote $c \Delta f=\{x \in X \mid c(x) \neq f(x)\}$ and define for $c \in \mathcal{C}, \epsilon \in R$:

$$
\Delta_{\epsilon}(c)=\left\{c \Delta f \mid f \in \mathcal{F}, \sum_{x \in c \Delta f} P_{X}(x) \geq \epsilon\right\}
$$

Notes:

- Replace \sum by \int for continuous X
- $\Delta_{\epsilon}(c)$ does not have \mathcal{F} in the subscript but it depends on it!

Example for a treshold concept c (with threshold θ) and $\epsilon=0.5$, with $\mathcal{F}=\left\{f_{1}, f_{2}\right\}$ (thresholds θ_{1}, θ_{2}), assuming uniform P_{X} :

$$
c \Delta f_{1} \in \Delta_{\epsilon}(c)
$$

$c \Delta f_{2} \notin \Delta_{\epsilon}(c)$

Error regions

Note that for any \mathcal{F}, any $\mathcal{c} \in \mathcal{C}$ and any x-sample S

$$
\begin{aligned}
\Pi_{\mathcal{F}}(S) & =\{f \cap S \mid f \in \mathcal{F}\} \\
\Pi_{\Delta_{0}(c)}(S) & =\{(c \Delta f) \cap S \mid f \in \mathcal{F}\}
\end{aligned}
$$

There is a bijective mapping

$$
f \cap S \Leftrightarrow(c \Delta f) \cap S
$$

between $\Pi_{\mathcal{F}}(S)$ and $\Pi_{\Delta_{0}(c)}(S)$. Thus

$$
\left|\Pi_{\Delta_{0}(c)}(S)\right|=\left|\Pi_{\mathcal{F}}(S)\right|
$$

and therefore

$$
\mathcal{V}\left(\Delta_{0}(c)\right)=\mathcal{V}(\mathcal{F})
$$

We will need this observation later. (Remind: $\mathcal{V}\left(\Delta_{0}(c)\right)$ depends on \mathcal{F} !)

ϵ-net

For any $\epsilon \in R$, an x-sample S is an ϵ-net for a concept $c \in \mathcal{C}$ and hypothesis class \mathcal{F} if every region $r \in \Delta_{\epsilon}(c)$ contains a point from S, i.e $r \cap S \neq\{ \}$.

Example for interval hypotheses, with $\mathcal{F}=\left\{f_{1}, f_{2}\right\}$:

$={ }_{c}^{c \Delta f_{1}} c$
$\left\{x_{1}, x_{2}\right\}$ is not an ϵ-net.
$\left\{x_{2}, x_{3}\right\}$ is an ϵ-net.
$\left\{x_{1}, x_{2}, x_{3}\right\}$ is an ϵ-net.

