AE4M33RZN, Fuzzy logic: **Fuzzy description logic**

Radomír Černoch

radomir.cernoch@fel.cvut.cz

16/11/2015

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Revision of crisp description logic

Language SH/F

Concepts and interpretation

Notion of truth

Fuzzy description logic

Concepts

Notion of truth

Queries

Homework

Biblopgraphy

Our treatment of fuzzy description logic is based on a family of crisp description logic SHF(D) [Baader, 2003]:

· AL

- · AL
 - · atomic negation
 - concept intersection
 - · universal restrictions
 - limited existential quantification
- · C

- · AL
 - · atomic negation
 - · concept intersection
 - · universal restrictions
 - limited existential quantification
- C= full concept negation
- . 5

- · AL
 - · atomic negation
 - · concept intersection
 - · universal restrictions
 - limited existential quantification
- C= full concept negation
- S = ALC + transitive roles
- · H

Our treatment of fuzzy description logic is based on a family of crisp description logic SHF(D) [Baader, 2003]:

- · AL
 - atomic negation
 - concept intersection
 - · universal restrictions
 - limited existential quantification
- C= full concept negation
- S = ALC + transitive roles

• /

- · AL
 - atomic negation
 - · concept intersection
 - · universal restrictions
 - limited existential quantification
- C= full concept negation
- S = ALC + transitive roles
- ℋ= role hierarchies

- /= inverse properties
- 7

- · AL
 - · atomic negation
 - · concept intersection
 - · universal restrictions
 - limited existential quantification
- C= full concept negation
- S = ALC + transitive roles

- /= inverse properties
- 7
- · concept intersection
- · universal restrictions
- limited existential quantification
- role restriction
- · D

- · AL
 - · atomic negation
 - · concept intersection
 - · universal restrictions
 - limited existential quantification
- C= full concept negation
- S = ALC + transitive roles

- /= inverse properties
- · 7
- · concept intersection
- · universal restrictions
- limited existential quantification
- · role restriction
- D = data types

SHIF concepts

Let A and R be the sets of atomic concepts and atomic roles.

Concept constructors

$C,D := \top \mid \bot$	top and bottom concepts	(1)
A	atomic concept	(2)
¬ C	concept negation	(3)
C \sqcap D	intersection	(4)
C L D	concept union	(5)
∀R · C	full universal quantification	(6)
J-NE	full existential quantification	(7)

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

Fuzzy DL

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

Contains concept assertions $\langle i \in I : C \rangle$ and role assertions $\langle (i, j \in I) : R \rangle$.

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

∠Box (Assertion Box)

Contains concept assertions $\langle i \in I : C \rangle$ and role assertions $\langle (i, j \in I) : R \rangle$.

$\mathscr{T}\mathit{Box}$ (Terminology Box)

Contains *general concept inclusion* (GCI) axioms $\langle C \sqsubseteq D \rangle$ and role axioms (role hierarchy $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity, ...).

Crisp description logic interpretation

Interpretation $\mathcal F$ is a tuple $(\Delta^{\mathcal F},\cdot^{\mathcal F})$ (interpretation domain, interpretation function), which maps

an individual to domain object $\mathbf{i}^{\mathcal{J}} \in \Delta^{\mathcal{J}}$ an atomic concept to domain subsets $\mathsf{C}^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}}$ an atomic role to subset of domain tuples $\mathsf{R}^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}}$

Crisp description logic interpretation

The non-atomic concepts are interpreted as follows:

non-atomic concept	its interpretation
Т	$\Delta^{\mathcal{F}}$
\perp	Ø
¬ C	$\Delta^{\mathcal{F}}\setminusC^{\mathcal{F}}$
СПО	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
C L D	$C^{\mathscr{I}} \cup D^{\mathscr{I}}$
$\forall R \cdot C$	$\{x \mid \forall y \in \Delta^{\mathcal{I}} . ((x,y) \in R^{\mathcal{I}}) \Rightarrow (y \in C^{\mathcal{I}})\}$
∃R·C	$\{x \mid \exists y \in \Delta^{\mathcal{J}} . ((x,y) \in R^{\mathcal{J}}) \land (y \in C^{\mathcal{J}})\}$

Crisp notion of truth

Axiom satisfaction

axiom	satisfied when
$\langle i:C\rangle$	$\mathbf{i}^{\mathscr{J}} \in C^{\mathscr{J}}$
$\langle (i,j):R \rangle$	$(\mathbf{i}^{\mathscr{J}},\mathbf{j}^{\mathscr{J}})\inR^{\mathscr{J}}$
$\langle C \sqsubseteq D \rangle$	$C^\mathscr{I} \sqsubseteq D^\mathscr{I}$
transitive(R)	$R^\mathscr{I}$ is transitive

If an interpretation satisfies τ , we write $\tau \vDash \mathscr{I}$.

• Interpretation $\mathcal F$ is a *model* of a knowledgebase $\mathcal K = \mathcal A Box + \mathcal F Box$ (or $\mathcal F$ satisfies $\mathcal K$) if it satisfies all its axioms.

Fuzzy DL

• Interpretation $\mathscr I$ is a model of a knowledgebase $\mathscr K=\mathscr A \mathit{Box}+\mathscr T \mathit{Box}$ (or $\mathscr I$ satisfies $\mathscr K$) if it satisfies all its axioms.

$$\mathcal{I} \vDash \mathcal{K} \Leftrightarrow (\forall \tau \in \mathcal{K}. \ \mathcal{I} \vDash \tau)$$

• Axiom τ is a *logical consequence* of $\mathcal K$ if every model of $\mathcal K$ satisfies τ .

$$\mathcal{K} \vDash \tau \Leftrightarrow [\forall \mathcal{I}. \ (\mathcal{I} \vDash \mathcal{K}) \Rightarrow (\mathcal{I} \vDash \tau)]$$

 Concept C is satisfiable if there is an interpretation 𝒯, where the C has at least 1 individual. • Interpretation $\mathscr I$ is a model of a knowledgebase $\mathscr K=\mathscr A \mathit{Box}+\mathscr T \mathit{Box}$ (or $\mathscr I$ satisfies $\mathscr K$) if it satisfies all its axioms.

$$\mathcal{I} \vDash \mathcal{K} \Leftrightarrow (\forall \tau \in \mathcal{K}. \ \mathcal{I} \vDash \tau)$$

- Axiom τ is a *logical consequence* of $\mathcal K$ if every model of $\mathcal K$ satisfies τ .

$$\mathcal{K} \vDash \tau \Leftrightarrow [\forall \mathcal{I}. \ (\mathcal{I} \vDash \mathcal{K}) \Rightarrow (\mathcal{I} \vDash \tau)]$$

Concept C is satisfiable if there is an interpretation \(\mathcal{I} \), where the C has
at least 1 individual.

$$\exists i, \mathcal{I}. \mathcal{I} \models \langle i:C \rangle$$

Fuzzy DL

Basic idea

1. Keep the the previous slides intact.

Basic idea

- 1. Keep the the previous slides intact.
- 2. Add below and above every operation.

Basic idea

- 1. Keep the the previous slides intact.
- 2. Add o below and above every operation.
- 3. Watch the semantic change.

Male \sqcap Female \neq ⊥

Overview

We will show the **fuzzyDL** reasoner [Bobillo and Straccia, 2008] capabilities, which extends the SHF(D) family with fuzzy capabilities.

Concept constructors

We start with atomic concepts A. Derived concepts are on the next slide together with their interpretation. (Each concept is interpreted as a fuzzy subset of the domain.)

Fuzzy DL interpretation

Fuzzy interpretation ${\mathscr I}$ is a tuple $\Delta^{\mathscr I}$, $\cdot^{\mathscr I}$ which maps

an individual to a domain object $i^{\mathcal{J}} \in \Delta^{\mathcal{J}}$ an atomic concept to a domain subsets $\mathsf{C}^{\mathcal{J}} \in \mathbb{F}(\Delta^{\mathcal{J}})$ an atomic role to a relation on the domain $\mathsf{R}^{\mathcal{J}} \in \mathbb{F}(\Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}})$

C, D :=	interpretation of x
	0
Т	1
Α	$A^{\mathcal{I}}(x)$
¬ C	$\frac{1}{s}C^{\mathscr{I}}(x)$

C, D :=	interpretation of x	
	О	
Т	1	
Α	$A^{\mathcal{I}}(x)$	
¬ C	$\frac{A^{\mathscr{I}}(x)}{\overline{S}}C^{\mathscr{I}}(x)$	
C D	$C^{\mathscr{I}}(x) \stackrel{\wedge}{\circ} D^{\mathscr{I}}(x)$	
СŪD	$C^{\mathscr{I}}(x) \stackrel{\wedge}{\vdash} D^{\mathscr{I}}(x)$	

C, D :=	interpretation of x
	0
Т	1
Α	$A^{\mathscr{I}}(x)$
¬C	$\frac{1}{S}C^{\mathscr{I}}(x)$
C G D	$C^{\mathscr{I}}(x) \wedge D^{\mathscr{I}}(x)$
СÜD	$C^{\mathscr{I}}(x) \stackrel{\wedge}{\Gamma} D^{\mathscr{I}}(x)$
$C\stackrel{S}{\sqcup}D$	$C^{\mathscr{I}}(x) \overset{S}{\vee} D^{\mathscr{I}}(x)$
СПР	$C^{\mathscr{I}}(x) \overset{L}{\vee} D^{\mathscr{I}}(x)$

C, D :=	interpretation of x
	О
Т	1
Α	$A^{\mathscr{I}}(x)$
¬ C	$\frac{1}{S}C^{\mathscr{I}}(x)$
C G D	$C^{\mathscr{I}}(x) \wedge D^{\mathscr{I}}(x)$
СÜD	$C^{\mathscr{I}}(x) \stackrel{\wedge}{L} D^{\mathscr{I}}(x)$
CÖD	$C^{\mathscr{I}}(x) \overset{S}{\vee} D^{\mathscr{I}}(x)$
СŢР	$C^{\mathscr{I}}(x) \overset{\mathrm{L}}{\vee} D^{\mathscr{I}}(x)$
$C \stackrel{R}{\vdash_S} D$	$C^{\mathscr{I}}(x) \stackrel{R}{\Longrightarrow} D^{\mathscr{I}}(x)$
$C \stackrel{R}{\underset{L}{\longmapsto}} D$	$C^{\mathscr{I}}(x) \stackrel{\mathbb{R}}{\underset{L}{\rightleftharpoons}} D^{\mathscr{I}}(x)$
$C \xrightarrow{S} D$	$C^{\mathscr{I}}(x) \stackrel{S}{\Longrightarrow} D^{\mathscr{I}}(x)$

C, D :=	interpretation of x
3 · AE	$\sup_{y} R^{\mathscr{J}}(x,y) \wedge C^{\mathscr{J}}(y)$
$\forall R \cdot C$	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$

C, D :=	interpretation of x
3 · AE	$\sup_{y} R^{\mathscr{I}}(x,y) \wedge C^{\mathscr{I}}(y)$
∀R · C	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$
(n C)	$n \cdot C(x)$ $mod(C^{\mathcal{I}}(x))$
mod(C)	$mod(C^\mathscr{I}(x))$

C, D :=	interpretation of x
3 · AE	$\sup_{y} R^{\mathscr{J}}(x,y) \wedge C^{\mathscr{J}}(y)$
$\forall R \cdot C$	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$
(n C)	$n \cdot C(x)$
mod(C)	$n \cdot C(x)$ $mod(C^{\mathscr{I}}(x))$
$w_1 C_1 + + w_k C_k$	$w_1 C_1^{\mathscr{I}}(x) + + w_k C_k^{\mathscr{I}}(x)$

C, D :=	interpretation of x
∃R·C	$\sup_{y} R^{\mathscr{J}}(x,y) \stackrel{\wedge}{\wedge} C^{\mathscr{J}}(y)$
$\forallR\cdotC$	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$
(n C)	$n \cdot C(x)$
mod(C)	$mod(C^{\mathscr{I}}(x))$
$w_1 \subset + + w_k \subset k$	$w_1 C_1^{\mathscr{I}}(x) + + w_k C_k^{\mathscr{I}}(x)$
C	$\begin{cases} C^{\mathscr{I}}(x) & C^{\mathscr{I}}(x) \leq n \\ o & \text{otherwise} \end{cases}$

Modifiers

Modifier is a function that alters the membership function.

Example

Linear modifier of degree c is

$$a = \frac{c}{c+1}$$
$$b = \frac{1}{c+1}$$

Fuzzy DL ontology

Ontology consists of axioms (denoted τ) in $\mathscr{A}Box$ and $\mathscr{T}Box$:

Fuzzy DL ontology

Ontology consists of axioms (denoted τ) in $\mathscr{A}Box$ and $\mathscr{T}Box$:

∠Box (Assertion Box)

Contains concept assertions $\langle i \in I : C \mid \alpha \rangle$ and role assertions $\langle (i, j \in I) : R \mid \alpha \rangle$.

Fuzzy DL ontology

Ontology consists of axioms (denoted τ) in $\mathscr{A}Box$ and $\mathscr{T}Box$:

$\mathscr{A}Box$ (Assertion Box)

Contains concept assertions $\langle i \in I : C \mid \alpha \rangle$ and role assertions $\langle (i, j \in I) : R \mid \alpha \rangle$.

$\mathcal{T}Box$ (Terminology Box)

GCI axioms $\langle C \sqsubseteq D \mid \alpha \rangle$ state that "C is D at least by α ".

Besides GCI, there are role hierarchy axioms $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity axioms and definitions of inverse relations.

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{J}}(\mathbf{i}^{\mathcal{J}}) \geq \alpha$

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{J}}(\mathbf{i}^{\mathcal{J}}) \geq \alpha$
$\langle (i,j) : R \alpha \rangle$	$C^{\mathcal{F}}(\mathbf{i}^{\mathcal{F}}) \ge \alpha$ $R^{\mathcal{F}}(\mathbf{i}^{\mathcal{F}}, \mathbf{j}^{\mathcal{F}}) \ge \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C^{\mathscr{I}} \stackrel{\circ}{\subseteq} D^{\mathscr{I}} \geq \alpha$

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{J}}(\mathbf{i}^{\mathcal{J}}) \geq \alpha$
$\langle (i,j): R \alpha \rangle$	$R^{\mathscr{J}}(\mathbf{i}^{\mathscr{J}},\mathbf{j}^{\mathscr{J}}) \geq \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C^{\mathscr{I}} \stackrel{\circ}{\subseteq} D^{\mathscr{I}} \geq \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_1^{\mathscr{I}} \subseteq R_2^{\mathscr{I}}$
$\langle transitive \ R \rangle$	$R^\mathscr{I}$ is \circ -transitive

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{J}}(\mathbf{i}^{\mathcal{J}}) \geq \alpha$
$\langle (i,j): R \alpha \rangle$	$R^{\mathscr{I}}(i^{\mathscr{I}},j^{\mathscr{I}}) \geq \alpha$
$\langle C \sqsubseteq D \alpha \rangle$	$C^{\mathscr{I}} \stackrel{\circ}{\subseteq} D^{\mathscr{I}} \ge \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_1^{\mathscr{I}} \subseteq R_2^{\mathscr{I}}$
$\langle transitive R \rangle$	$R^\mathscr{I}$ is \circ -transitive
$\langle R_1 = R_2^{-1} \rangle$	$R_{1}^{\mathscr{I}} = (R_{2}^{\mathscr{I}})^{-1}$

Fuzzy axioms

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{J}}(\mathbf{i}^{\mathcal{J}}) \geq \alpha$
$\langle (i,j): R \alpha \rangle$	$R^{\mathscr{J}}(\mathbf{i}^{\mathscr{J}},\mathbf{j}^{\mathscr{J}}) \geq \alpha$
$\langle C \sqsubseteq D \alpha \rangle$	$C^{\mathscr{I}} \stackrel{\circ}{\subseteq} D^{\mathscr{I}} \geq \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_1^{\mathscr{I}} \subseteq R_2^{\mathscr{I}}$
$\langle transitive R \rangle$	$R^\mathscr{I}$ is \circ -transitive
$\langle R_1 = R_2^{-1} \rangle$	$R_{1}^{\mathscr{I}} = (R_{2}^{\mathscr{I}})^{-1}$

Using these definitions, the notions of *logical* consequence and satisfiability (of both concepts and axioms) remains the same.

More on slide 317.

Best/Worst Degree Bound

What is the minimal degree of an axiom that ${\mathscr K}$ ensures?

$$\operatorname{glb}(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \vDash \langle \tau \geq \alpha \rangle\}$$
$$\operatorname{lub}(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \vDash \langle \tau \leq \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

Best/Worst Degree Bound

What is the minimal degree of an axiom that ${\mathscr K}$ ensures?

$$glb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \models \langle \tau \geq \alpha \rangle\}$$

$$lub(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \models \langle \tau \leq \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

• From an empty \mathcal{H} , you cannot infer anything and therefore $glb(\mathcal{H},\tau)=o$ and $lub(\mathcal{H},\tau)=i$ (if using atomic concepts only). Only by adding new axioms into \mathcal{H} , the bounds "tighten up".

Best/Worst Degree Bound

What is the minimal degree of an axiom that \mathcal{K} ensures?

$$glb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \models \langle \tau \geq \alpha \rangle\}$$

$$lub(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \models \langle \tau \leq \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

- From an empty \mathcal{K} , you cannot infer anything and therefore $glb(\mathcal{K}, \tau) = o$ and $lub(\mathcal{K}, \tau) = i$ (if using atomic concepts only). Only by adding new axioms into \mathcal{K} , the bounds "tighten up".
- What happens if $glb(\mathcal{K}, \tau) \ge lub(\mathcal{K}, \tau)$ for some axiom τ ?

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$\mathrm{glb}(\mathcal{K},\mathsf{C}) = \sup_{\mathcal{I}} \sup_{\mathbf{x} \in \Delta} \{\mathsf{C}^{\mathcal{I}}(\mathbf{x}) \,|\, \mathcal{I} \,\vDash\, \mathcal{K}\}\,.$$

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$\operatorname{glb}(\mathcal{K},\mathsf{C}) = \sup_{\mathcal{I}} \sup_{\mathsf{x} \in \Delta} \{\mathsf{C}^{\mathcal{I}}(\mathsf{x}) \,|\, \mathcal{I} \vDash \mathcal{K}\}.$$

This is a generalization of concept satisfiability.

Homework

Next time we will see a reasoning algorithm for fuzzy DL. Please read [Straccia and Bobillo, 2008]:

Basic idea of the fuzzyDL solver:

Straccia, Umberto and Fernando Bobillo. "Mixed integer programming, general concept inclusions and fuzzy description logics." Mathware & Soft Computing 14, no. 3 (2008): 247-259.

Where can you find the article? Google scholar is a place to start.

Fuzzy DL

Bibliography

The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press.

Bobillo, O. and Straccia, U. (2008).

fuzzydl: An expressive fuzzy description logic reasoner.

In In Proc. FUZZ-IEEE-2008. IEEE Computer Society, pages 923–930.

straccia, U. and Bobillo, F. (2008).

Mixed integer programming, general concept inclusions and fuzzy description logics.

Mathware and Soft Computing, 14(3):247-259.