
Automated Planning
Theory and practice

Damien Pellier
Damien.Pellier@math-info.univ-paris5.fr

http://www.math-info.univ-paris5.fr/~pellier/

MASTER II Informatique
UFR de Mathématiques et d’Informatique

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 1 / 168

http://www.math-info.univ-paris5.fr/~pellier/

Part I

Introduction and Overview

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 2 / 168

Outline of Introduction

1 First Intuitions on Planning
Intuitive Planning Definition
Automated Planning Motivations
Form of Planning

2 Domain-Independent Planning
Domain Specific Approaches
Domain Independent Approaches

3 Conceptual Model of Planning
State Transition System
Graphical Representation of Planning Model
Restricted Models

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 3 / 168

Intuitive Planning Definition

What is Planning ?

Planning is the reasonning side of acting. It is an abstract, explicite
deliberation process that chooses and organizes action by anticipating their
outcomes.

This deliberation aims at achieving as best as possible some pretated
objectives.

Automated planning is an area of Artificial Intelligence (AI) that studies this
deliberation process computationally.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 4 / 168

Automated Planning Motivations

1 Practical Motivations: Designing information processing tools that give
access to affordable and efficient planning ressources.

Example

Imagine a rescue operation after a natural disaster.

I That operation involves a large number of actors and require transportation
infrastuctures.

I It relies on careful planning and assessment of several alternate plans.

I It is also time constrainted and it demands immediate decisions that must be
supported with a planning tool.

2 Theorical Motivations: Planning is an important component of rational
behavior.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 5 / 168

Path and Motion Planning

Path and Motion Planning is concerned with the synthesis of a geometric path
from a starting position in space to a goal and a control trajectory along that path
that specifies the state variables in the configuration space of mobile systems,
such as a truck, a mechanical arm, a robot, etc.

Motion planning takes into account:

the model of the environment

the kinematic constraints

the dynamic contraints

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 6 / 168

Perception Planning

Perception Planning is concerned with plans involving senseing actions for
gathering informations. It arises in tasks such as modeling environements or
objects, identifying objects, localizing through sensing a mobile system, or more
generally identifying the current state of the environment.

Perception planning addresses question such as information needed and when
it is needed, where to look for it, which sensors are most adequate for a
particular task and how to use them.

It relies on decision theory for problems of which and when information is
needed, on mathematical programming and constraint satisfaction for
viewpoint selection and the sensor modalities.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 7 / 168

Navigation Planning

Navigation Planning combines the two previous problems of motion and
perception planning in order to reach a goal or to explore an area. the purpurse of
navigation planning is to synthetize a policy that combines localization primitives
and sensor-based motion primitives.

Example

visually following a road until reaching some landmark

moving along some heading while avoiding obstacles

etc.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 8 / 168

Manipulation Planning

Manipulation Planning is concerned with handling objects, e.g., to build
assemblies.

The actions include sensory information.

A plan might involve picking up an object from its marked sides, returning it
if needed, inserting it into an assembly, and pushing lightly till it clips
mechanically into position.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 9 / 168

Manipulation Planning

Manipulation Planning arises in dialog and in cooperation problems between
several agents, human or artificial. It addresses issues such as when and how to
query needed information and which feedback should be provided.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 10 / 168

Domain Specific Approaches

Domain specific approaches to specific forms of planning are certainly well
justified. However, they are frustrating for several reasons.

1 Some commonalities to all these forms of planning are not adressed in the
domain specific approaches. The study of these commonalities is needed for
understanding the process of planning.

2 It is more costly to adress each planning problem anew instead of relying on
and adapting some general tools.

3 Domain specific approaches are not satisfactory for studying and designing an
autonomous intelligent machine. Its deliberative capabilities will be limited to
areas for which it has a domain specific planner.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 11 / 168

Domain Independent Approaches

Domain independent approaches relies on abstract, general models of actions.
These models range from simple ones that allow only for limited forms of
reasoning to models with richer prediction capabilities. There are in particular the
following forms of models and planning capabilities.

1 Project Planning in which models of actions are reduced mainly to temporal
and precedence constraints, e.g., the earliest and the latest start times of an
action or its latency with respect to another action. Project planning is used
for interactive plan edition and verification.

2 Scheduling and resources allocation in which the action models include the
above types of constraints plus constraints on the resources to be used by
each action.

3 Plan synthesis in which the action models enrich the precedent models with
the conditions needed for applicability of an action and the effects of the
action on the state of the world.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 12 / 168

State Transition System

The conceptual model of planning can be represented as a state transition system.
Formally, a state transition system is a 4-tuple Σ = (S ,A,E , γ), where:

S = {s1, s2, . . . , sn} is a finite or recursively enumerable set of states

A = {a1, a2, . . . , an} is a finite or recursively enumerable set of actions

E = {e1, e2, . . . , en} is a finite or recursively enumerable set of events

γ : S × A× E → 2S is a state transition function

A state transition system may be represented by a directed graph whose nodes are
the state in S

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 13 / 168

Planning Objectives

Given a state transition Σ, the purpose planning is to find which actions to apply
to which states in order to achieve some objective when starting from a given
situation. A plan is a structure that gives the appropriate actions. The objective
can be specified in several different ways.

1 The simplest specification consists of a goals state sg or a set of goal states
Sg . In this case, the objective is achieved by any sequence of state transition
that ends at one of the goal states.

2 The objective can be also expressed by the satisfaction of some conditions
over the sequence of state followed by the system.

3 The objective can be expressed by an utility function attached to each states,
with penalties and rewards. The goal is to optimize some compound function
of these utilities.

4 The objective can be expressed as a tasks that the system should perform.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 14 / 168

Graphical Representation of Planning Model

Planning Conceptual Model

Controller

Planner

System

System description

Initial state

Objectives

PlansExecution status

ActionsObservations

Events

It is convenient to depict conceptual
planning model through the interaction
between three components:

A state transition system Σ evolves as
specified by its state transition function
γ, according to the events and actions
that it receives.

A controller, given as input the state s
of the system, provides as output an
action a according to some plan.

A planner, given as input a description
of the system Σ, an initial situation,
and some objective, synthesizes a plan
for the controller in order to achieve
the objectives.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 15 / 168

Crane and robot transportation example I

cont.

pallet

crane

location1 location2

robot

S1

cont.

pallet

crane

location1 location2

robot

S3

S4

location2location1

crane

pallet

robot cont.

S5

location2location1

crane

pallet robot cont.

S2

location2location1

crane

pallet

robot

cont.

S0

location2location1

crane

pallet robot
cont.

put

take

move1move2

loadunload

put

take

move2

move1

move2 move1

Figure: shows a state transition system involving a container in a pile, a crane that pick up and put down
the container and a robot that can carry the container and move it from one location to another.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 16 / 168

Crane and robot transportation example II

In this example:

the set of states is S = {s0, s1, s2, s3, s4, s5}
the set of actions is A = {take, put, load , unload ,move1,move2}
the set of events E is empty

the transition function γ is defined by: if a is an action and γ(s, a) is not
empty then a is applicable to state s

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 17 / 168

Restricted Model

Planning model puts forward various restrictive assumptions, particularly the
following ones.

Finite Σ. The system Σ has a finite set of states.

Fully Observable Σ. The system Σ is fully observable, i.e., one has complete
knowledge about the state of Σ.

Deterministic Σ. The system Σ is deterministic, i.e., , for every states s and
for every event of action u, |γ(s, u)| ≤ 1. If an action is applicable to a state,
its application brings a deterministic system to a single other state.

Static Σ. The system Σ is static, i.e., the set of event E is empty. Σ has no
internal dynamics.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 18 / 168

Restricted Model

Restricted Goals. The planner handles only restricted goals that are specified
as an explicit goal state sg or a set of goal states Sg .

Sequential Plans. A solution plan to a planning problem is a linearly ordered
finite sequence of actions.

Implicit time. Actions and events have no duration. They are instantaneous,
state transitions. This assumptions is embedded in state transition systems, a
model that does not represent time explicitly.

Offline Planning. The planner is not concerned with any change that may
occur in Σ while it is planning. It plans for a given initial and goal states
regardless of the current dynamics, if any.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 19 / 168

Bibliography

M. Ghallab, D. Nau and P. Traverso
Automated Planning Theory and Practice
Morgan Kaufmann, 2004

P. Régnier and V. Vidal
Algorithmes de la planification en IA
Cépaduès, 2004

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 20 / 168

Part II

Classical Representation for Planning

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 21 / 168

Outline of Part II

4 Set-Theoretic Representation
Planning Domains
Planning Problems
Plans and Solutions
Properties of the Set Theoric Representation

5 Classical Representation
State Representation
Operators and Actions
Domains and Problems
Extending the Classical Representation

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 22 / 168

Introduction

We discuss three different ways to represent classical planning problems. Each of
them is equivalent in expressive power.

Set theoric representation, each state of the world is a set of propositions and
each action is a syntactic expression specifying which propositions belong to
the state in order for the action to be applicable and which propositions the
action will add or remove to change the state of the world.

Classical representation, the states and the actions are like the ones described
for set theoric representation except that first order literals and logical
connectives are used instead propositions.

State variable representation, each state is represented by a tuple of value n
state variables {x1, . . . , xn} and each action is represented by a partial
function that map this tuple into some other tuple of values of the n states.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 23 / 168

Planning Domains, Problems and Solutions

A set theoric representation relies on a finite set of proposition symbols that are
intented to represent various propositions about the world. We need to define the
basic notion of

Planning Domain

Planning Problem

Planning Solution

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 24 / 168

Planning Domains Definition

Definition (Set Theoric Planning Domain)

Let L = {p1, . . . , pn} be a finite set of proposition symbols. A set theoric planning
domain on L is a restricted state transition system Σ = (S ,A, γ) such that:

S ⊆ 2L, i.e., each state s is a subset of L. If p ∈ s then p holds in s.
Otherwise p does not hold in s (Closed World Assumption).

Each action a ∈ A is a triple of subset of L written a = (precond(a),
effect−(a), effect+(a)) and effect−(a) effect+(a) are disjoint.

S has the property that if s ∈ S , then, for every action a that is applicable to
s, the set (s - effect−(a)) ∪ effect+(a) ∈ S .

The state transition function is γ(s, a) = (s - effect−(a)) ∪ effect+(a) if
a ∈ A is applicable to s ∈ S .

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 25 / 168

Planning Problem Definition

Definition (Set Theoric Planning Problems)

A set theoric planning problem is a triple P = (Σ, s0, g) where

s0, the initial state, is a member of S

g ⊆ L is a set of propositions called goal propositions that give the
requirements that a state must be satisfy in order to be a goal state. The set
of goal states is Sg = {s ∈ S | g ⊆ s}.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 26 / 168

Planning Problem Example

Here is one possible set theoric representation of the domain described in figure 2.

Example (Set of propositions)

L = {onground, onrobot, holding,at1,at2} where

onground means that the container is on the ground

onrobot means that the container is on the robot

holding means that the crane is holding the container

at1 means that the robot is at location1

at2 means that the robot is at location2

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 27 / 168

Planning Problem Example

Example (Set of states)

S = {s0, . . . , s5} where

s0 = {onground , at2} ; s1 = {holding , at2} ; s2 = {onground , at1}
s3 = {holding , at1} ; s4 = {onrobot, at1} ; s5 = {onrobot, at2}

Example (Set of actions)

A = {take, put, load, unload, move1, move2} where

take = ({onground}, {onground}, {holding})
put = ({holding}, {holding}, {onground})
load = ({holding, at1}, {holding}, {onrobot})
unload = ({onrobot, at1}, {onrobot}, {holding})
move1 = ({at2}, {at2}, {at1})
move2 = ({at1}, {at1}, {at2})

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 28 / 168

Plan Definition

Definition (Plan)

A plan is any sequence of action π = 〈a1, . . . , ak〉, where k ≥ 0. The length of the
plan |π| = k, the number of actions. If π1 = 〈a1, . . . , ak〉 and π2 = 〈a′1, . . . , a′j〉 are
plans, then their concatenation is a plan π1 · π2 = 〈a1, . . . , ak , a

′
1, . . . , a

′
j〉.

The state produced by applying π to a state s is the state that is produced by
applying the action of π in the order given. We will denote this by extending the
state transition function γ as follows:

γ(s, π) =

s ifk = 0

γ(γ(s, a1, 〈a2, . . . , ak〉) ifk > and a1 is applicable to s

undefined otherwise

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 29 / 168

Plan Solution Definition

Definition (Plan Solution)

Let P = (Σ, s0, g) be a planning problem. A plan π is a solution for P if
g ⊆ γ(s0, π).

A solution can have two proprieties:

1 A solution plan π is redundant if there is a proper subsequence of π that is
also a solution of P.

2 A solution plan π is minimal if no other solution plan for P contains fewer
actions that π.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 30 / 168

Plan Solution Example

Example

In the planning domain described previously, suppose the initial state is s0 and
g = {onrobot, at2}. Let

π1 = 〈move2,move2〉
π2 = 〈take,move1〉
π3 = 〈take,move1, put,move2, take,move1, load ,move2〉
π4 = 〈take,move1, load ,move2〉
π5 = 〈move1, take, load ,move2〉

Then π1 is not a solution because it is not applicable to s0; π2 is not a solution
because although it is applicable to s0, the resulting state is not a goal state; π3 is
a redundant solution; π4 and π5 are the only minimal solutions.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 31 / 168

Properties of the Set Theoric Representation

1 Readability. On advantage of the set theoric representation is that it provides
a more concise and readable representation of the state transition system
than we would get by enumerating all of the states and transition explicitly.

2 Computation. A propositions in a state s is assumed to persist in γ(s, a)
unless explicitly mentioned in the effects of a. The effects are defined with
two subsets: effect−(a) and effect+(a). Hence, the transition function γ and
the applicability conditions of actions rely on very early computable set
operations: if precond(a) ⊆ s;, then γ(s, a) = (s− effect−(a)) ∪ effect+(a).

3 Expressibility. A significant problem is that not every state transition system
Σ has a set theoric representation.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 32 / 168

Classical Representation

The classical representation scheme generalize the set theoric representation
scheme using notation derived from first order logic.

States are represented as set of logicals atoms that ere true or false within
some interpretation.

Actions are represented by planning operators that change the truth values of
theses atoms.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 33 / 168

States Representation

The classical planning language is built on a first order language L.

Definition (State)

A state is a set of ground atoms of L. L has no function symbols. Thus the set S
of all possible states is guaranteed to be finite. As in the set of theoric
representation scheme, an atom p holds in s iff p ∈ s. If g is a set of literals, we
will say that s satisfies g (denoted s |= g) when there is a substitution σ such
that every positive literal of σ(g) is in s and no negated literal of σ(g) is in s.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 34 / 168

States Representation Example

r1

loc2loc1

crane1

c1

c2

c3

c1

p1

p2

Figure: Initial state s0 = { attached(p1, loc1), attached(p2, loc1); in(c1, p1, in(c3, p1),
top(c3, p1), on(c3, c1), on(c1, pallet) in(c2, p2), top(c2, p2), on(c2,pallet),
belong(crane1, loc1), empty(crane1), adjacent(loc1, loc2), adjacent(loc2, loc1), at(r1,
loc2), occupied(loc2), unloaded(r1)}.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 35 / 168

Planning Operator Definition

The planning operators define the transition function γ of the state transition
system.

Definition (Planning Operator)

A planning operator is a triple o = (name(o), precond(o), effects(o)) whose
elements are follows:

name(o), the name of the operator, is a syntactic expression of the form
n(x1, . . . , xk) where n is a symbol called an operator symbol (n is unique in
L) and x1, . . . , xk are all variable symbols that appear anywhere in o.

precond(o) and effects(o), the preconditions and effects of o, respectively are
generalizations of the preconditions and the effects of the set theory action,
i.e., instead of being sets of proposition they are sets of literals.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 36 / 168

Planning Operator Example

Example (Take operator)

The planning operator take(k,l ,c ,d ,p) can be defined as follow:

;; crane k at location l takes c off of d in pile p

take(k,l ,c ,d ,p)

precond: belong(k,l), attached(p,l), empty(k), top(k), on(c ,d)
effects: holding(k,c), ¬empty(k), ¬in(c ,p), ¬top(c ,p), ¬on(c ,d),

top(d ,p)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 37 / 168

Action Definition

Definition (Action)

An action is any ground instance of planning operator. If a is an action and s is a
state such that precond+(a) ⊆ s and precond−(a) ∩ s = ∅, then a is applicable to
s, and the result of applying a to s is the state:

γ(s, a) = (s − effects−(a)) ∪ effects+(a)

Thus, like in set theoric planning, state transitions can easily be computed using
set operations.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 38 / 168

Action Example

Example

The action take(crane1,loc1,c3,c1,p1) is applicable to the state s0 of the figure 2.
The result is the state s5 = γ(s0, take(crane1,loc1,c3,c1,p1)) shown by the figure
below.

c3

r1

loc2loc1

crane1

c1

c2

c1

p1

p2

Figure: s5 = { attached(p1, loc1), in(c1, p1), top(c1,p1), on(c1, pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1),
holding(crane1,c3), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2),
unloaded(r1)}.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 39 / 168

Classical Planning Domains Definition

Definition (Classical Planning Domain)

Let L be a first order language that has finitely many predicate symbols and
constraint symbols. A classical planning domain in L is a restricted state
transition system Σ = (S ,A, γ) such that:

S ⊆ 2all ground atoms ofL

A = {all ground instances of the operators in O} where O is a set of
operators as defined earlier

γ(s, a) = (s − effects−(a)) ∪ effects+(a) if a ∈ A is applicable to s ∈ S and
otherwise γ(s, a) is undefined

S is closed under γ, i.e., if s ∈ S , then for every action a that is applicable to
s, γ(s, a) ∈ S .

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 40 / 168

Classical Planning Problems Definition

Definition (Classical Planning Problem)

A classical planning problem is a triple P = (O, s0, g) where:

O is the set of planning operators

s0, the initial state, is any state in S

g , the goal, is any set of ground literals

Sg = {s ∈ S | s satisfies g}

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 41 / 168

Plan Example

Example

Consider the following plan:

π1 = 〈 take(crane1, loc1,c3,c1,p1),

move(r1,loc2,loc1),

load(crane1,loc1,c3,r1) 〉

This plan is applicable to the state s0 shown in figure 2 producing the state s6.
We verify that

g1 = {loaded(r1,c3), at(r1,loc1)}

is included in s6.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 42 / 168

Action Example

loc2loc1

crane1

c1

c2

c1

p1

p2r1
c3

Figure: s6 = { attached(p1, loc1), in(c1, p1), top(c1,p1), on(c1, pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1),
empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc1), occupied(loc1),
loaded(r1)}.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 43 / 168

Extending the Classical Representation

Classical planning formalism is very restricted, extensions to it are needed in order
to describe interesting domains. The most important extensions are :

Typing variables

Conditional Planning Operators

Quantified expression

Disjunctive preconditions

Axiomatic Inference

etc.

A planning langage, called PDDL, has been developed to express all these
extensions (PDDL stands for Planning Domain Description Langage).

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 44 / 168

PDDL Example

Example (Crane robot transportation domain)

(define (domain dwr)

(:requirements :strips :typing)
(:types location pile robot crane container)
(:predicates

(adjacent ?l1 ?l2 - location) (attached ?p - pile ?l -location)
(belong ?k - crane ?l - location) (at ?r - robot ?c container)
(occupied ?l - location) etc.)

(:action move

(:parameters (?r - robot ?from ?to - location))
(:precondition (and (adjacent .from ?to) (at ?r ?from)

(not (occupied ?to))))
(:effect (and (at ?r ?to) (not (occupied ?from)) (occupied ?to)

(not (at ?r ?from)))))

(:action load

etc.))

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 45 / 168

Further readings

V. Lifschitz
On the semantics of STRIPS.
Reasoning about actions and plans 1-9, Morgan Kaufmann, 1987

B. Nebel
On the compatibility and expressive power of propositional planning
formalism.
Journal of Artificial Intelligence Research 12:271-315, 2000

D. McDermott
PDDL, the Planning Domain Definition Language.
Technical report. Yale Center for Computational Vision and Control, 1998
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 46 / 168

Part III

State Space Planning

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 47 / 168

Outline of Part IV

6 Forward Search
Forward Search Principle
Forward Search Algorithm
Forward Search Example

7 Backward Search
Backward Search Principle and Algorithm
Backward Search Example

8 STRIPS Algorithm
STRIPS Algorithm Principle
STRIPS Algorithm
Sussman Anomaly

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 48 / 168

Introduction

What is State Space Planning ?

The simplest classical planning algorithms.

Search algorithms in which the search space is a subset of the state space:
I Each node corresponds to a state of the world.
I Each arc corresponds to a state transition.
I The current plan corresponds to the current path in the seach space.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 49 / 168

Forward Search Principle

The forward search algorithm is nondeterministic

The forward search algorithm is sound and complete

The forward search algorithm takes as input the statement P = (O, s0, g) of
a planning problem P. If P is solvable, then Forward-search(O, s0, g) returns
a solution plan. Otherwise it returns failure.

The plan returned by each recursive invocation of the algorithm is called a
partial solution because it is part of the final solution returned by the top
level invocation.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 50 / 168

Forward Search Algorithm

Algorithm (ForwardSearch(O, s0, g))

if s satisfies g then return an empty plan π
active ← {a | a is a ground instance of an operator O

and precond(a) is true in s }
if active = ∅ then return Failure
nondeterministically choose an action a1 ∈ active
s1 ← γ(s, a1)
π ← ForwardSearch(O, s1, g)
if π 6= Failure then return a1 · π
else return Failure

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 51 / 168

Forward Search Example

Take the state s5 defined in figure 4:

s5 = { attached(p1, loc1), in(c1, p1), top(c1,p1), on(c1, pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1),
holding(crane1,c3), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2), unloaded(r1)}.

and the goal:

g = { at(r1,loc1), loaded(r1,c3)}.

If the ForwardSearch algorithm chooses the action a = move(r1,loc2,loc1) in the
first invocation and a = load(crane1, loc1,c3,r1) in the second invocation
producing the state s6. s6 staisfies g , the execution returns:

π = 〈move(r1,loc2,loc1), load(cran1,loc1,c3,r1)〉

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 52 / 168

Forward Search Example

Warning

There are many other execution traces, some of which are infinite. For instance,
one of them makes the following infinite sequence of choices for a:

move(r1,loc2,loc1)

move(r1,loc1,loc2)

move(r1,loc2,loc1)

move(r1,loc1,loc2)

etc.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 53 / 168

Backward Search Principle and Algorithm

The idea is to start at the goal and apply inverses of the planning operator to
produce subgoals, stopping if we produce a set of subgoals satisfied by the initial
state. The backward search algorithm is sound and complete.

Algorithm (BackwardSearch(O, s0, g))

if s0 satisfies g then return an empty plan π
revelant ← {a | a is a ground instance of an operator O

that is revelant for g }
if revelant = ∅ then return Failure
nondeterministically choose an action a1 ∈ revelant
s1 ← γ−1(s, a1)
π ← BackwardSearch(O, s1, g)
if π 6= Failure then return a1 · π
else return Failure

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 54 / 168

Backward Search Example

Recall that the initial state is the state s5:

s5 = { attached(p1, loc1), in(c1, p1), top(c1,p1), on(c1, pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1),
holding(crane1,c3), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2), unloaded(r1)}.

and the goal:

g = { at(r1,loc1), loaded(r1,c3)}.

which is a subset of the state s6.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 55 / 168

Backward Search Example: first invocation

In the first invocation of the BackwardSearch algorithm, it chooses a =
load(crane1, loc1,c3,r1) and then assigns:

First Invocation

g ← γ−1(g , a)

= (g − effects+(a)) ∪ precond(a)

= ({at(r1,loc1), loaded(r1,c3)} − {empty(crane1), loaded(r1,c3)})
∪ {belong(crane1,loc1), holding(crane1,c3), at(r1,loc1),

unloaded(r1)}
= {at(r1,loc1), belong(crane1,loc1), holding(crane1,c3),

unloaded(r1)}

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 56 / 168

Backward Search Example: second invocation

In the second invocation of the BackwardSearch algorithm, it chooses a =
move(r1, loc2,loc1) and then assigns:

Second Invocation

g ← γ−1(g , a)

= (g − effects+(a)) ∪ precond(a)

= ({at(r1,loc1), belong(crane1,loc1), holding(crane1,c3),

at(r1,loc1), unloaded(r1)} − {at(r1,loc1), occupied(loc1)})
∪ {adjacent(loc2,loc1), at(r1,loc2), ¬occupied(loc1)}
= {belong(crane1,loc1), holding(crane1,c3), unloaded(r1),

adjacent(loc2,loc1), at(r1,loc2), occupied(loc1)}

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 57 / 168

Backward Search Example: result

This time g is satisfied by s5, so the execution trace terminates and returns the
plans:

π = 〈(move(r1,loc2,loc1), load(crane1,loc1,c3,r1)〉

Warning

Like ForwardSearch algorithm, there are many other execution traces, some of
which are infinite. For instance, one of them makes the following infinite sequence
of choices for a:

load(crane1,loc1,c3,r1)

unload(crane1,loc1,c3,r1)

load(crane1,loc1,c3,r1)

unload(crane1,loc1,c3,r1)

etc.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 58 / 168

STRIPS Algorithm Principle

The biggest problem of the previous approaches is how improve efficiency by
reducing the size of the search space.

STRIPS is somewhat similar to the BackwardSearch but differs from it in the
following ways:

1 In each recursive call of the STRIPS algorithm, the only subgoals eligible to be
worked on are the preconditions of the last operator added to the plan. This
reduce the branching factor substantially. However, it makes STRIPS
incomplete.

2 If the current state satisfies all of on operator’s preconditions, STRIPS
commits to executing that operator and will not backtrack over this
commitment. This prune a large portion of the search space but again make
STRIPS incomplete.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 59 / 168

STRIPS Algorithm

Algorithm (STRIPS(O, s, g))

π ← the empty plan
while true do

if s satisfies g then return π
revelant ← {a | a is a ground instance of an operator O

that is revelant for g }
if revelant = ∅ then return Failure
nondeterministically choose an action a ∈ revelant
π′ ← STRIPS(O, s, precond(a))
if π′ = Failure then return Failure
;; if we get here, then π′ achieves precond(a) from s
s ← γ(s, π′)
;; s now satisfies precond(a)
s ← γ(s, a)
π′ ← π · π · a

end

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 60 / 168

Sussman Anomaly

loc1

crane1

c2

p1 p2

c1

c3

q3q2q1

Figure: s0 = { in(c3,p1), top(c3,p1), in(c1,p1), on(c3, c1),
on(c1,pallet), in(c2,p2), top(c2,p2), on(c2,pallet),
top(pallet,q1), top(pallet,q2), top(pallet, q3),
empty(crane1) }

c3

c2

c1

Figure: g = { on(c1,c2),
on(c2,c3) }

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 61 / 168

STRIPS result for the Sussman Anomaly

The shortest solutions that STRIPS can find are all similar to the following:

take(c3,loc1,crane1,c1)
put(c3,loc1,crane1,q1)
take(c1,loc1,crane1,p1)
put(c1,loc1,crane1,c2) STRIPS has achieved on(c1,c2)
take(c1,loc1,crane1,c2
put(c1,loc1,crane1,p1)
take(c2,loc1,crane1,p2)
put(c2,loc1,crane1,c3) STRIPS has achieved on(c2,c3)

but needs to reachieved on(c1,c2)
take(c1,loc1,crane1,p1)
put(c1,loc1,crane1,c2) STRIPS has now achieved both goals

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 62 / 168

STRIPS result for the Sussman Anomaly

STRIPS does not always find the best solution.

STRIPS’s difficulty involves deleted condition interaction.

Example

The action take(c1,loc1,crane1,c2) is necessary in order to help achieve on(c2,c3)
but it deletes the previous acheived condition on(c1,c2).

One way to find the shortest plan for Sussman anomaly is to interleave plans
for different goals.

Note
This observation such as these led to the development of a technique called plan
space planning, in which the planning system searches thought a space whose
nodes are partial plans rather that states of the world.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 63 / 168

Exercice

Consider the Sussman anomaly shown in figures 1 and 1. The shortest plan π1 for
achieving on(c1,c2) from the initial state is:

π1 = 〈take(c3,loc1,crane1,c1)

put(c3,loc1,crane1,q1)

take(c1,loc1,crane1,p1)

put(c1,loc1,crane1,c2)〉

and the the shortest plan π2 for achieving on(c2,c3) from the initial state is:

π2 = 〈take(c2,loc1,crane1,p2)

put(c2,loc1,crane1,c3)〉

How to interleave π1 and π2 to find the shortest plan for the Sussman anomaly ?

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 64 / 168

Further readings

R. Fikes and N. Nilsson
STRIPS: A new approach to the application of theorem proving to problem
solving.
Artificial Intelligence 2(3-4):189-208, 1971

G. Sussman
A computational model of skill acquisition.
New York: Elsevier, 1975

J. Hoffmann
FF: The fast forward planning system.
Artificial Intelligence Magazine 22(3):57-62, 2001

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 65 / 168

Part IV

Plan Space Planning

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 66 / 168

Outline of Part IV

9 Plans Planning Principle
Plan Space First Intuition
Partial Plan
Solution Plans

10 Algorithms for Plan Space Planning
PSP Principle
PSP Algorithm

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 67 / 168

Introduction

The search space is no more a states space but a plans space.
I Nodes are partially specified plans.
I Arcs are plan refinement operations intended to further complete a partial

plan, i.e., to achieve an open goal or to remove a possible inconsistency.

Solution plan definition changes. Planning is considered as two separate
operations:

1 the choice of actions
2 the ordering of the chosen actions so to achieve the goal.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 68 / 168

Plan Space Example

l1

k1

c1c1

p1

k2

p2

r1

l2

l3

Figure: A robot r1 has to move a container c1 from pile p1 at location l1 to pile p2 and
location l2. Initially r1 is unloaded at location l3. There are empty cranes k1 and k2 at
locations l1 and l2. Pile p1 at location l1 contains only container c1; pile p2 at location
l2 is empty. All location are adjacent.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 69 / 168

Plan Space Example

Consider we have a partial plan that contains only the two following actions

take(k1,c1,p1,l1): crane k1 picks up container c1 from pile 1 at location l1

load(k1,c1,r1,l1): crane k1 loads container c1 on robot r1 at location l1

Let us refine it by adding a new action and let us analyse how the partial plan
should be updated. We will come up with four ingredient:

1 adding actions

2 adding ordering constraints

3 adding causal relationship

4 adding variable binding constraints

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 70 / 168

Adding Actions Example

Nothing in this partial plan guarantees that robot r1 is already at location l1.
Proposition at(r1,l1), required as a precondition by action load, is a subgoal in
this partial plan. We need to add the following action:

move(r1,l,l1): robot r1 moves from location l to the required location l1.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 71 / 168

Adding Ordering Constraints

This additional move action achieves its purpose only if it is constrained to come
before the load action. But should the move action come before or after the take
action? Both are possible.

Least Commitment principle

Not add a constraint to a partial plan unless it is strictly needed. May permit to
run actions concurrently.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 72 / 168

Adding Causal Links

In partial plan, we have added one action and an ordering constraint to another
action already in the plan. Is that enough? No quite. Because

there is no explicit notion of a current state (e.g., an ordering constraint does not
say that the robot stays at location l1 until load action is performed). Hence, we
will be encoding explicitly in the partial plan the reason why action move was
added: to satisfy the subgoal at(r1,l1) required by action load.

This relationship between the two actions move and load with respect to
proposition at(r1,l1), is called a causal link.

Note
The former action is called the provider of the proposition, the later the consumer.
The role of a causal link is to state that a precondition is supported by another.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 73 / 168

Adding Variable Binding Constraints

A final item in the partial plan that goes with refinement we are considering is
that variable binding constraints.

Operators are added in the partial plan with systematic variables renaming.

We should make sure that the new operator move concerns the same robot
r1 and the same location l1 as those in the operator take and load.

What about l the robot will be come from? At this stage there is no reason
to bind this variable to a constant. The variable l is kept unbounded.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 74 / 168

Partial Plan Definition

Definition (Partial Plan)

A partial plan is a tuple = (A,≺,B, L) where:

A = {a1, . . . , ak} is a set of partially instantiated planning operators.

≺ is a set of ordering constraints on A of the form (ai ≺ aj).

B is a set of binding constraints on the variables of actions in A of the form
x = y , x 6= y , or x ∈ Dx , Dx being a subset of the domain of x .

L is a set of causal links of the form 〈ai
p−→ aj〉, such that ai and aj are

actions in A, the constraint (ai ≺ aj) is in ≺, proposition p is an effect of ai

and a precondition of aj , and the binding constraints for variables of ai and aj

appearing in p are in B.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 75 / 168

Partial Plan Example

Let us illustrate two partial plans corresponding figure 1. The goal of having
container c1 in pile p2 can be expressed simply as in(c1,p2). The initial state is:

{ adjacent(l1,l2), adjacent(l1,l3), adjacent(l2,l3), adjacent(l2,l3), adjacent(l3,l1),
adjacent(l3,l2), attached(p1,l1), attached(p2,l2), belong(k1,l1), belong(k2,l2),
empty((k1), empty(k2), at(r1,l3), unloaded(r1), occupied(l3), in(c1,p1),
on(c1,pallet), top(c1,p1), top(pallet,p2) }

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 76 / 168

Partial Plan Example

A graphical representation of the initial plan π0 is shown in figure 3. Each box is
an action preconditions above and effects below the box. Solid arrows are ordering
constraints; dashed arrows are causal links; and binding constraint are implicit or
shown directly in the arguments.

a0 an

empty(k1), empty(k2)
at(r1,l3), unloaded(r1)
occupied(l3)
in(c1,p1), on(c1,pallet)
top(c1,p1), top(pallet,p2)

in(c1,p2)

Figure: Initial plan π0.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 77 / 168

Partial Plan Example

a0

in(c1,p1)
at(r1,l3)

an

in(c1,p2)

move(r1,l,l1)

adjacent(l,l1)
at(r1,l)
not(occupied(l1))

at(r1,l1)
not(at(r1,l))
not(occupied(l1))
occupied(l)

take(k1,c1,p1,l1)

holding(k1,c1)
not(in(c1,p1))

in(c1,p1)
empty(k1)

loaded(r1,c1)
empty(k1)

at(r1,l1)
holding(k1,c1)
unloaded(r1)

load(k1,c1,r1,l1)

Figure: A partial plan

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 78 / 168

Solution Plan Definition

Definition (Solution Plan)

A partial plan π = (A,≺,B, L) is a solution plan for a problem P = (Σ, s0, g) if:

its ordering constraints ≺ and binding constraints B are consistent.

every sequence of totally ordered and totally instantiated actions of A
satisfying ≺.

B is a sequence that defines a path in the state transition system Σ from the
initial state s0 corresponding to effects of the action a0 to state containing all
goal proposition in g given by preconditions of an.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 79 / 168

Example: Plan with incorrect sequence

a0

in(c1,p1)
at(r1,l3)

an

in(c1,p2)

move(r1,l,l1)

adjacent(l,l1)
at(r1,l)
not(occupied(l1))

at(r1,l1)
not(at(r1,l))
not(occupied(l1))
occupied(l)

take(k1,c1,p1,l1)

holding(k1,c1)
not(in(c1,p1))

in(c1,p1)
empty(k1)

loaded(r1,c1)
empty(k1)

at(r1,l1)
holding(k1,c1)
unloaded(r1)

load(k1,c1,r1,l1)

move(r1,l',l'')

Figure: A plan containing an incorrect sequence

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 80 / 168

Flaw and Threat

Definition (Threat)

An action ak in a plan π is a threat on a causal link (ai
p−→ aj) iff:

ak has an effect ¬q that is possible inconsistent with p.

the ordering constraints (ai ≺ ak) and (ak ≺ aj = are consistent with B.

the binding constraints from the unification of q and p are consistent with B.

Definition (Flaw)

A flaw in a plan π = (A,≺,B, L) is either:

a subgoal, i.e., a precondition of an action in A with out a causal link

a threat, i.e., an action that may interfere with causal link.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 81 / 168

Example: Solution Plan

a0 an

move(r1,l3,l1)

take(k1,c1,p1,l1)

load(k1,c1,r1,l1) move(r1,l3,l1) unload(k1,c1,r1,l1) put(k1,c1,p2,l2)

Figure: A solution plan

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 82 / 168

PSP Principle

A plan π is a solution when it has no flaw, the main principle is to refine π, while
maintaining ≺ and B consistent, until it has no flaw. The basic operations for
refining a partial plan π toward a solution plan are the following:

Find the flaws of π, i.e., its subgoals and its threats.

Select on such flaw.

Find ways to resolve it.

Choose a resolver for the flaw.

Refine π according to that resolver.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 83 / 168

PSP Algorithm

Algorithm (PSP(π))

flaws ← OpenGoals(π) ∪ Threat(π)
if flaws = ∅ then return π
select any flaw sigma ∈ flaws
resolvers ← Resolve(σ,π)
if resolvers = ∅ then return Failure
nondeterministically choose a resolver ρ ∈ resolvers
π′ ← Refine(ρ, π)
return PSP(π′)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 84 / 168

Attached Procedures

OpenGoals(π). This procedure find all subgoals in π.

Threat(π). This procedure find every action ak that is a threat on some causal

link (ai
p−→ aj).

Resolve(σ, π). This procedure finds all ways to solve a flaw σ.

Refine(ρ, π). This procedure refines the partial plan π with le elements in the
resolver, adding to π on ordering constraint, on or several binding
constraints, a causal link, and/or a new action.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 85 / 168

Exercice

1 Trace the PSP procedure step-by-step on the Sussman anomaly (see figure 1).
2 Draw the complete graph to compute the solution plan of the figure 4:

I How many threats are there ?
I How many plans can be found ?

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 86 / 168

Further readings

E. Sacerdoti
Planning in a hierarchy of abstraction spaces.
Artificial Intelligence 5:115-135, 1974

J. Penberthy and D.S. Weld
UCPOP: A sound, complete, partial order planner for ADL.
In Proceedings of the International Conference on Knowledge Representation
and Reasoning 103-114, 1992

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 87 / 168

Part V

Heuristics in Planning

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 88 / 168

Outline of Part V

11 Design Principle for Heuristics : Relaxation

12 Heuristics for State-Space Planning
State Reachability Relaxation
Heuristics Guided Forward Search
Heuristics Guided Backward Search
Admissible State-Space Heuristics
Graphplan as Heuristics Search Planner

13 Heuristics for Plan-Space Planning
Flaw-Selection Heuristics
Resolver-Selection Heuristics

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 89 / 168

Introduction

Why heuristics are interested for planning ?
I Although planning systems have become much more efficient, they still suffer

from combinatorial complexity. Even restrited planning domains, the
complexity can be intractable in the worst case

Approache to study heuristics
I Define a nondeterministic abstract search procedure in a space in which each

node u, (i.e., structured collection of actions and constraints) represents a set
of solution Πu, (i.e., the set of all solution reachable from u), For instance, u
is

F in state-space planning, a simple sequence of actions
F in plan-space planning, a set of actions, causal links, orderig constraints and

bindings constraints
F in graph based planning, a subgraph of the planning graph
F etc.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 90 / 168

Abstract Search Procedure (1/2)

The abstract search procedure involves three main steps in addition to a
terminaison step:

1 A refinement step consists of modifying the collection of actions and/or
constraints associated with a node u. In a refinement of u, the set of soltion
Πu remains unchanged

F For instance, if we find out there is only one action a that meets a constraint in
u, a is maked an explicit part of u and the constraints is removed

2 A branching setp generates on or more children of u. These nodes will be the
next candidates for the next node to visit

F For instance, in forward state-space seach, each child corresponds to appending
a different action to the end of a partial plan

3 A pruning step consists of removing from the set of candidates nodes some
nodes that appear to be unpromising for the search

F For instance, a node migth be considered to be unpromising if we have a record
of having already visited that node

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 91 / 168

Abstract Search Procedure (2/2)

Algorithm (Abstract-search(u))

if Terminal(u) then
return u

else
u ← Refine(u)
B ← Branch(u)
C ← Prune(B)
if C = ∅ then

return Failure
else

nondeterministically choose any v ∈ C
return Abstract-search(v)

end

end

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 92 / 168

Abstract Search Procedure for Plan-Space Planning

The different steps of the abstract search procedure for plan-space planning are
the following:

1 Branching consists of selecting flaws and finding its resolvers

2 Refinement consists of applying a resolver to the current partial plan

3 Pruning : there is no pruning step

4 Terminaison occurs when no flaws are left in the partial plan

Note
Since paths in the plan space are likely to be infinite, a control strategy such as
best-first search or iterative deepening should be used

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 93 / 168

Abstract Search Procedure for State-Space Planning

The different steps of the abstract search procedure for state-space planning are
the following:

1 Branching are defined by actions

2 Refinement : there is no branching step

3 Pruning removes candidate nodes corresponding to cycle

4 Terminaison occurs when the plan goes all the way from the initial state to
a goal

Note

A control strategy such as A*, branch-and-bound search or iterative deepening
should be used

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 94 / 168

Abstract Search Procedure for Graph-Based Planning

The different steps of the abstract search procedure for graph-based planning are
the following:

1 Branching idendifies possible actions that achieve subgoals

2 Refinement consists of propaging constraints for actions chosen in the
branching step

3 Pruning uses the recorded nogood tuples of subgoals that failed in some layer

4 Terminaison occurs if the solution-extraction process succeeds

Note
Graph-based planning correspond to using abstract search procedure with iterative
deepening control strategy.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 95 / 168

Deterministic versus undeterministic search

To implement a deterministic
search procedure a node
selection function (Select(C))
is needed to choose which node
u to visite next from a set of
candidates C

Often the deterministic search is
done in a depth-first manner

⇒

Algorithm (Depth-first-search(u))

if Terminal(u) then return u
else

u ← Refine(u)
B ← Branch(u)
C ← Prune(B)
while C = ∅ do

v ← Select(C)
C ← C − {v}
π ← Depth-first-search(v)
if π 6= Failure then return π
return Failure

end

end

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 96 / 168

Design Principle for Heuristics : Relaxation
Node selection heuristic

Node delection heuristique

A node selection heuritic is any way of ranking a set of nodes in order of ther
relative deirability. We will model this heuristic as function h that can be used to
compute a numeric evaluation h(u) for each candidates node u ∈ C , i.e.,

Select(C) = min{h(u) | u ∈ C}

Notes
1 Node selection heuristics are used for resolving nondeterministic choices

2 If there isa deterministic technique for choosing at each point the rigth node,
this technique is not a heuristic

3 A node selection heuristic not always garantees to be the best choice but
often lead to the best solution

4 A node selection heuristic must be easy to compute

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 97 / 168

Design Principle for Heuristics : Relaxation
Relaxation Principle

Node selection heuristics are often based on relaxation priciple:

Relaxation Principle

In order to assess how desirable a node u is, one considers a simpler problem that
is obtained from the original one by making simplifying assumptions and by
relaxing constraints

One estimates how desirable u is by using u to solve the simpler relaxed
problem and using that solution as a, estimate of the solution one would get
if pne used u to solve the original problem

On the other hand, the more simplified the relaxed problem is, the easier it
will be to compute the heuristic

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 98 / 168

Design Principle for Heuristics : Relaxation
Admissible Node Selection Heuritic

Admissible Node Selection Heuristic
A node selection heuristic h is admissible if it is a lower bound estimate cost of a
minimal solution reachable from u, i.e., h(u) ≤ h∗(u) with h∗(u) the minimum
cost of any solution reachable from u

h∗(u) =∞ if no solution is reachable from u

Notes
1 Admissible node selection heuristic is desirable if one seeks a optimal solution

with respect to some cost criterion, e.g., path-finding A∗

2 Heuristic search as iterative-deepening scheme, are usually able to garantee
on optimal solution when guided with an admissible node selection heuristic

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 99 / 168

Heuristics for State-Space Planning
Reminder

In state-space planning, each node u corresponds to a state s

At some point the candicates nodes are the sucessor states of the current
state s, for the actions applicable to s. For each action a to a state s:

I in forward search the next state is given by the transition function:

γ(s, a) = (s − effects−(a)) ∪ effects+(a)

I In backward search the next state is given by the transition function:

γ(s, a)1 = (s − effects+(a)) ∪ precond(a)

Relaxation principle

In order to choose the most preferable candidate state, we need to assess how
close each action may bring us to the goal (forward search) or initial state s0
(backward search).

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 100 / 168

State Reachability Relaxation
A Simple Relaxation Heuristic (1/2)

Simple relaxation heuristic idea
I A very simple relaxation heuristic is to neglect effects−(a)

Consequences:
I γ(s, a) involves on a monotonic increase in the number of propositions of s
I It is easier to compute distance goal with such simplified γ

Definition (Simple Relaxation Heuristic)

Let s ∈ S be a state, p a proposition and g a set of propositions. The minimum
distance from s to p, denoted ∆∗(s, g), is the minimum number of actions
required to reach from s a state containing all proposition p g .

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 101 / 168

State Reachability Relaxation
A Simple Relaxation Heuristic (1/2)

∆ is given by the following equations:

∆(s, p) = 0 if p ∈ s

∆(s, p) =∞ if ∀a ∈ A, p /∈ effects+(a)

∆(s, g) = 0 if g ⊆ s

otherwise :

∆(s, p) = mina{1 + ∆(s, precond(a)) | p ∈ effects+(a)}
∆(s, g) = Σp∈g∆(s, p)

Notes
1 These equation gives the distance to g in the relaxed problem and

2 an estimate distance in the unrelaxed problem

3 The heuristic function can be define as h(s) = ∆(s, g)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 102 / 168

State Reachability Relaxation
The ∆-Algorithm

The ∆-algorithm is polynomial in time

As minimum distance graph searching, the algorithm stops when a fixed
point is reached

Algorithm (Delta(s))

foreach p do
if p ∈ s then ∆(s, p)← 0 else ∆(s, p)←∞
U ← {s}

end
repeat

foreach a such that ∃u ∈ U, precond(a) ⊆ u do
U ← {u} ∪ effects+(a)
foreach p ∈ effects+(a) do

∆(s, p)← min{∆(s, p), 1 + Σq∈precond(a)∆(s, q)}
end

end
until no change occurs in the above updates

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 103 / 168

Heuristics Guided Forward Search

Algorithm (Heuristic-forward-Search(π, s, g , A))

if s satisfies g then return π
options ← {a ∈ | a applicable to s}
foreach a ∈ options do ∆(γ(s, a))
while options 6= ∅ do

a← min{∆(γ(s, a), g) | a ∈ options }
options ← options −{a}
π′ ← Heuristic-forward-Search(π, a, γ(s, a), g ,A)
if π′ 6= Failure then return π′

end
return Failure

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 104 / 168

Heuristics Guided Backward Search

Algorithm (Heuristic-backward-Search(π, s0, g , A))

if s0 satisfies g then return π
options ← {a ∈ | a revelant for g}
while options 6= ∅ do

a← min{∆(s, γ−1(g , a)) | a ∈ options }
options ← options −{a}
π′ ← Heuristic-backward-Search(a · π, s0, γ

−1(g , a),A)
if π′ 6= Failure then return π′

end
return Failure

Notes
1 We suppose that ∆-algorithm is run once initially

2 The backward search is more efficient than forward search because it has to
be run less ∆-algorithm

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 105 / 168

Admissible State-Space Heuristics

It can be desirable to use admissible heuristic function for two reasons:
1 It may be interested in getting the shortest plan, e.g., cost may be associated

to actions
2 Admissible permit a safe pruning

F If Y is the length of a plan and if h(u) < Y , h being admissible, then we are
sure that non solution plan of length smaller that Y can be obtained from u.
⇒ pruning does not affect completeness

Exercice
Is the simple heuristic h previouly introduced admissible ?
No, because ∆(s, g) is not a lower bound on the true minimal distance ∆∗(s, g).
Assume a problem where there is an action a such that:

precond(a) ⊆ s0,

effects+(a) = g and

s0 ∩ g = ∅.

The distance to the goal is 1, but ∆(s0, g) = Σp∈g∆(s0, p) = |g |

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 106 / 168

Admissible State-Space Heuristics
First Admissible heuristic

Idea
Instead of estimating the distance to a set of propositions g to be the sum of the
distances to the elements of g , we estimate it to be the maximum distance to its
propositions

Now, ∆1 is given by the following equations:

∆1(s, p) = 0 if p ∈ s

∆1(s, p) =∞ if ∀a ∈ A, p /∈ effects+(a)

∆1(s, g) = 0 if g ⊆ s

otherwise :

∆1(s, p) = mina{1 + ∆1(s, precond(a)) | p ∈ effects+(a)}
∆1(s, g) = max{∆1(s, p) | p ∈ g}

Experience shows that h1 is not as informative as h even if h1 is admissible

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 107 / 168

Admissible State-Space Heuristics
Second Admissible heuristic

Idea
Instead of considering that the distance to a set of propositions g is the maximum
distance to propositions p ∈ g , we estimate it to be the maximum distance to a
pair of propositions {p, q}

Now, ∆2 is given by the following recusive equations (terminaison cases
remain unchanged):

∆2(s, p) = mina{1 + ∆2(s, precond(a)) | p ∈ effects+(a)}
∆2(s, {p, q}) = min{

mina{1 + ∆2(s, precond(a)) | {p, q} ∈ effects+(a)}
mina{1 + ∆2(s, {q} ∪ precond(a)) | p ∈ effects+(a)}
mina{1 + ∆2(s, {p} ∪ precond(a)) | q ∈ effects+(a)}}

∆2(s, q) = maxp,q{∆2(s, {p, q}) | {p, q} ⊆ q}

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 108 / 168

Graphplan as Heuristics Search Planner
Reminder : Graphplan Algorithm

Algorithm (GraphPlan(A, s0, g))

i ← 0,∇ ← ∅,P0 ← s0
repeat

i ← i + 1, G ← Expand(G)
until [g ⊆ Pi and g ∩ µPi = ∅] or Fixedpoint(G)
if g 6⊆ Pi or g ∩ µPi¬∅ then return Failure
Π← Extract(G , g , i)
if Fixedpoint(G) then return η ← |∇(κ)| else η ← 0
while Π = Failure do

i ← i + 1, G ← Expand(G), Π← Extract(G , g , i)
if Π = Failure and Fixedpoint(G) then

if η = |∇(κ)| then return Failure
η ← |∇(κ)|

end

end
return Π

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 109 / 168

Graphplan as Heuristics Search Planner
Comments

Graphplan looks like heuritic backward search procedure
I ∆-procedure and Expand procedure in graphplan perform a reachability

analysis
I The main difference :

F Expand builds a data stucture, the planning graph, which provides more
information attached to propositions not just distance to s0

The planning graph approximate the distance ∆∗(s0, g), that is the level of
the first layer of the graph that g ⊆ Pi and no pair of g is in µPi

Graphplan can be viewed as a heuristic search planner that first computes the
distance estimates in a forward propagation manner and then searches
backward from the goal using a iterative-deepening strategy augmented with
a learning mechanisms (nogoods hashtable)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 110 / 168

Heuristics for Plan-Space Planning
Reminder: PSP Procedure

Algorithm (PSP(π))

flaws ← OpenGoals(π) ∪
Threat(π)

if flaws = ∅ then return π
select any flaw sigma ∈ flaws
resolvers ← Resolve(σ,π)
if resolvers = ∅ then return Failure
nondeterministically choose a
resolver ρ ∈ resolvers
π′ ← Refine(ρ, π)
return PSP(π′)

Resolve

Select a flaw

ad
d

a
ne

w
 p

ar
tia

l p
la

n

Select a resolver
Failure

Solution planno flaw

no resolver

Threats

Plan Space

Ordering
constraint
manager

Binding
constraint
manager

Open goals

Refine

initial plan

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 111 / 168

Heuristics for Plan-Space Planning
Reminder: Plan-Space

Plan space can be viewed as AND/OR tree

The flaw correspond to the AND branches
I each flaw must be resolved in order to find a solution plan

The resolver correspond to the OR branches
I only one resolver is needed in order to a solution plan

Partial
plan π2

Partial
plan π4

Partial
plan π6

Partial
plan π3

Partial
plan π5

Flaws

a1 a2 a3 a4

Partial
plan π1

Partial plan π

...

a before b b before a
Resolvers

Unestablished
precondition g1

Unestablished
precondition g2

Action a threatens b's
precondition p

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 112 / 168

Flaw-Selection Heuristics
Serialization tree example (1/3)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 113 / 168

PSP choices
1 find an establisher for g1

2 solve the thread

3 find a establisher for g2

Partial
plan π112

Partial
plan π113

Partial
plan π121

Partial
plan π123

b before aa before b

a1

a2 a3 a4 a2 a3 a4

Partial
plan π1

Partial plan π

Partial
plan π11

Partial
plan π111

Partial
plan π12

Partial
plan π122

Flaw-Selection Heuristics
Serialization tree example (2/3)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 114 / 168

PSP choices
1 find a establisher for g2

2 solve the thread

3 find an establisher for g1

b before aa before b

a2

a1 a1

b before aa before b

a1 a1

b before aa before b

a1 a1

a3 a4

Partial
plan π1

Partial plan π

Partial
plan π11

Partial
plan π111

Partial
plan π12

Partial
plan π2

Partial
plan π3

Partial
plan π121

Partial
plan π21

Partial
plan π211

Partial
plan π22

Partial
plan π221

Partial
plan π31

Partial
plan π311

Partial
plan π32

Partial
plan π321

Flaw-Selection Heuristics
Serialization tree example (3/3)

All serialization trees lead to exactly the same set of solutions

All serialization trees do not contain the same number of nodes

The speed of PSP varies significantly depending on the number of node
explore. Thus PSP speeds depends on the order in which its selects flaws to
resolve

Question
How to choose the flaw to resolve to reduce the number of nodes to explored ?

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 115 / 168

Flaw-Selection Heuristics
The FAF-Heuristic

Idea

The fewest alternatives first (FAF) is to choose the flaw having the smallest
branching factor as early as possible in oder to limit the cost of eventual
backtracks.

The FAF-heuristic is easy to compute Θ(n) where n is the number of flaws in
a partial plan

The FAF-heuristic works relatively well compared with other flaw selection
heuristics

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 116 / 168

Flaw-Selection Heuristics
Other Flaw-Selection Heuristics

Zero-commitment: chooses flaw that has not already been choosen in order
to cut as soon as possible unachievable branches (low overhead)

Least-commitment: always selects a open goal which generates the fewest
refined plans (higth overhead)

Least-cost-flaw-repair : same as “Least-commitment” applied to the threat
too (higth overhead)

LIFO: Last in last out choice of the flaw (low overhead)

ZLIFO: Threat are selected depending “LIFO” strategy and open goal
depending “Zero-commitment” (low overhead)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 117 / 168

Resolver-Selection Heuristics

The technics presented for state space planning cannot be applied
I because they rely on relaxed distances between states, while states are not

explicit in the plan space

Hence, we have to come up with other means to rank the candidate nodes,
i.e., partial plan, at a search point

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 118 / 168

Resolver-Selection Heuristics
Simple Heuristics (1/2)

Idea
The choice of the resolver is based on an A∗ best-first search strategy with a
heuristic

f (π) = g(π) + h(π)

where

g(π) the cost of the partial plan π and

h(π) estimate of the additionnal cost of the best complete solution that
extends π

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 119 / 168

Resolver-Selection Heuristics
Simple Heuristics (2/2)

To elaborate the simple heuristic we can used:
1 the number of actions (S)
2 the number of open goals (OC)
3 the number of causal links (CL)
4 the number of threats (UC)

For instance UCPOP uses : S + OC + UC

Experiments show that S + OC works relatively well compared with other
heuristic combinaisons

Note

Due to causal links addition refinement mechanism, f (π) is not admissible

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 120 / 168

Resolver-Selection Heuristics
Regression AND/OR Graph heuristic

Regression AND/OR Graph heuristic

For each OC (π), the heuristic compute an AND/OR graph along regression steps
defined by γ−1 down to some fixed level k. Let ηk(OC (π)) be the weighted sum
of:

1 the number of actions in this graph that are not in π and

2 the number of subgoals remaining in its leaves that are not in the initial state
s0

Note
ηk incurs a significant overhead

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 121 / 168

Resolver-Selection Heuristics
Heuristic based on planning graph

Planning Graph Heuristic

Instead of computing for each OC (π) a regression AND/OR graph, this heuristic
builds a planning graph once for the planning domain and uses it as follow in
order to estimate ηk(OC (π)):

ηk(OC (π)) =

0 if OC (π) ⊆ s0
∞ if ∀a ∈ A, a is not revelant for OC (π)
maxp{δπ(a) + η(γ−1, a)) | p ∈ OC (π) ∩ effects+(a)

and a is relevant for OC (π)} otherwise

with δπ(a) = 0 when a is in π and δπ(a) = 1 otherwise

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 122 / 168

Exercice

Exercice 1

How many serialization trees are there for the AND/OR tree in slide 1 ?

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 123 / 168

Further readings

X. Nguyen, S. Kambhampati, and R. Nigenda.
Planning graph as the basis for deriving heuristics for plan synthesis by state
space and csp search.
Artificial Intelligence, 135(1-2):73 124, 2002.

A. Gerevini and L. Schubert.
Accelerating partial-order planners: Some techniques for effective search
control and pruning.
Journal of Artificial Intelligence Research, 5(1):95-137, 1996.

B. Bonet and H. Geffner.
Planning as heuristic search: New results.
In Proceedings of European Conference on Artificial Intelligence, pages
360 372, 1999.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 124 / 168

Part VI

Hierarchical Task Network Planning

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 125 / 168

Outline of Part VI

14 STN Planning
Tasks and Methods
Problems and Solutions

15 Total-Order STN Planning

16 Partial-Order STN Planning

17 HTN STN Planning
Task Networks
HTN Methods
HTN Problems and Solutions
HTN Planning procedures

18 Comparaison and extensions of HTN Planning

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 126 / 168

Introduction

Hierarchical Task Network (HTN) planning is like classical planning:
I each state of the world is represented by a set of atoms
I each action corresponds to a deterministic state transition

In HTN planner, the objective is not to achieve a set of goals but instead to
perform some set of tasks

The imput to the HTN planning system includes
1 a set of (operators) (similar to classical planning)
2 a set of methods each of which is a presciption for how to decompose some

task into some set of subtasks (smaller tasks)

HTN planning has been more widely used for practical applications because
HTN methods provide a convenient way to write problem-solving “recipes”
that correspond to human expertise.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 127 / 168

HTN Principle

HTN Principle

HTN planning proceeds by decomposing nonprimitive tasks recursively into
smaller and smaller subtasks, until primitive tasks are reached that can be
performed directly using the planning operators.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 128 / 168

HTN Example (1/2)

p1b

crane1

p1a

p1c

c12

c11

loc1 loc2

p2c

p2a

crane2

p2b

c23

c22

c21

p3b

crane3

p3a

p3c

loc3

c34

c33

c32

c31

Initial
State

loc1

p1c

p1a

crane1

p1b

c12

c11

p2b

crane2

p2a

p2c

loc2

c23

c22

c21

loc3

p3c

p3a

crane3

p3b

c34

c33

c32

c31
Goal

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 129 / 168

HTN Example (2/2)

Example (Take and put method)

take-and-put(c,k,l1,l2,p1,p2,x1,x2)

precond: top(p1,l1), on(c,x1) ;; true if p1 is not empty
attached(p1,l1), belong(k,l1) ;; bind l1 and k
attached(p2,l2), top(x2,p2) ;; bind l2 and x2

subtasks: 〈take(k,l1,c,x1,p1), put(k,l2,c,x2,p2)〉

To accomplish the task of moving the topmost container of a pile p1 to another
pile p2, we can use :

1 the DWR domain’s take operator to remove the container from p1 and

2 the put operator to put it on the top.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 130 / 168

STN Planning

STN (Simple Task Network) is a simplified version of HTN

In STN, terms, literals, operators, actions and plans definitions are the same
as in classical planning

However, STN language includes:
1 tasks
2 methods
3 task networks

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 131 / 168

Tasks and Methods
Tasks Definition

Definition (Task)

A task is an expression of the form

t(r1, . . . , rk)

such

t is a task symbol, i.e., an operator symbol (primitive task) or a method
symbol (nonprimitive task)

r1, . . . , rk are terms

Notes
1 A task is ground is all of the terms are ground; otherwise, it is unground

2 An action a = (name(a), precond(a), effects(a)) accomplishes a ground
primitive task t in a state s if name(a) = t and a is applicable to s.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 132 / 168

Tasks and Methods
Task Networks Definition

Definition (Simple Task Network)

A simple task network is an acyclic digraph

w = (U,E)

in which

U is the node set such that each node u ∈ U contains a task tu

E is the edge set that defines a partial ordering of U, e.g., u ≺ v iff there is a
path from u to v

Notes
1 w is ground is all of the tasks {tu | u ∈ U} are ground; otherwise w is

unground

2 w is primitive is all of the tasks {tu | u ∈ U} are primitive; otherwise w is
nonprimitive

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 133 / 168

Tasks and Methods
Task Networks Example

Example (Task Network)

In the DWR domain, let three tasks:

t1 = take(cran2,loc1,c1,c2,p1) a primitive task

t2 = put(cran2,loc2,c3,c4,p2) a primitive task

t3 = move-stack(p1,q) a non primitive task

and two task networks such ∀i , ui = ti :

w1 = ({u1, u2, u3}, {(u1, u2), (u2, u3)})
w2 = ({u1, u2}, {(u1, u2)})

Since w2 is totally ordered, we would usually write w2 = 〈t1, t2〉
Since w2 is ground and primitive, it corresponds to the plan
〈take(cran2,loc1,c1,c2,p1), put(cran2,loc2,c3,c4,p2)〉

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 134 / 168

Tasks and Methods
STN Method Definition

Definition
An STN method is a 4-tuple

m = (name(m), task(m), precond(m), network(m))

in which

name(m), the name of the method, i.e., , a expression if the form
m(x1, . . . , x2) where n is an unique method symbol and x1, . . . , x2 are all of
the variables symbols that occurs anywhere in m

task(m) is a non primitive task

precond(m) is a set of literals call method’s preconditions

network(m) is a task network whose tasks are called the subtasks of m

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 135 / 168

Tasks and Methods
STN Method Example

Example (DWR methods)

recursive-move(p,q,c,x)

task: move-stack(p,q)
precond: top(c,p), on(c,x) ;; true if p is not empty
subtasks: 〈move-topmost-container(p,q), move-stack(p,q)〉

;; the second subtask recursively moves the rest of the stack

do-nothing(p,q)

task: move-stack(p,q)
precond: top(pallet,p), on(c,x) ;; true if p is empty
subtasks: 〈〉 ;; no substasks because we are done

move-each-twice()

task: move-all-stacks()
precond: ;; no preconditions
network: u1 = move-stack(p1a,p1b), u2 = move-stack(p1b,p1c),

u3 = move-stack(p2a,p2b), u4 = move-stack(p2b,p2c),
u5 = move-stack(p3a,p3b), u6 = move-stack(p3b,p3c),
{(u1, u2), (u3, u4), (u5, u6)}

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 136 / 168

Tasks and Methods
Applicale and Relevant Method

Definition (Applicable Method)

A method instance m is applicable in a state s if precond+(m) ⊆ s and
precond−(m) ∩ s = ∅.

Definition (Revelant Method)

Let t be a task and m a method instance, if there is a substitution σ such that
σ(t) = task(m), then m is revelant for t, and the decomposition of t by m under
σ is δ(t,m, σ) = network(m). If m is totally ordered, we may write δ(t,m, σ) =
subtasks(m).

Note
For planning, we will interested in finding method instances that are both
applicable in the current state and relevant for some task we are trying to
accomplish.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 137 / 168

Tasks and Methods
Applicale and Relevant Method Example

Example (Applicable and Revelant Method)

Let t be the nonprimitive task move-stack(p1a,q), s the state of the world show
slide 6, and m be the method instance recursive-move(p1a,p1b,c11,c12). m is
applicable to s, revelant for t under substitution σ = {q ← p1b}, and decomposes
t into:

δ(t,m, σ) = 〈move-topmost-container(p1a,p1b),move-stack(p1a,p1b)〉

Graphical representation of the method decomposition:

move-stack(p1a,q)

move-topmost-container(p1a,p1b) move-stack(p1a,p1b)

recursive-move(p1a,p1b,c11,c12)
{q p1b}

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 138 / 168

Problems and Solutions
STN Planning Domain Definition

Definition (STN Planning Domain)

An STN planning domain is a pair

D = (O,M)

where

O is a set of operators

M is a set of methods.

D is a total-order planning domain if every m ∈ M is totally ordered.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 139 / 168

Problems and Solutions
STN Planning Problem Definition

Definition (STN Planning Problem)

An STN planning problem is a 4-tuple

P = (s0,w ,O,M)

where

s0 is the initial state

w is a task network called the initial task network

D = (O,M) is a STN planning domain

P is a total-order planning problem if w and D are totally ordered.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 140 / 168

Problems and Solutions
Solution Plan

Definition (Solution Plan)

Let P = (s0,w ,O,M) be a planning problem. Here are the cases in which a plan
π = 〈a1, . . . , an〉 is solution for P:

Case 1: w is empty. Then π is a solution for P is π is empty, i.e., π = 〈〉.
Case 2: There is a primitive task node u ∈ w that has no predessors in w .
Then π is a solution for P is a1 is applicable to tu in s0 and the plan
π = 〈a2, . . . , an〉 is a solution of the planning problem:

P ′ = (γ(s0, a1),w − {u},O,M)

Case 3: There is a nonprimitive task node u ∈ w that has no predessor in w .
Suppose there is an instance m of some method in M such that m is revelant
for tu and applicable in s0. Then π is a solution for P is there is a task
network w ′ ∈ δ(w , u,m, σ) such that π is a solution for (s0,w

′,O,M).

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 141 / 168

Problems and Solutions
Solution Plan Example (1/2)

Example (DWR Solution Plan)

Let P = (s0,w ,O,M), where s0 is the state shown slide 6,
w = 〈move-stack(p1a,p1b)〉, O is the usual set of operators, and M is the set of
methods given slide 5. Then there is only one solution for P:

π = 〈take(crane1,l1a,c11,c12,p1a),

put(crane1,l1b,c11,pallet,p1b),

take(crane1,l1a,c12,pallet,p11),

put(crane1,l1b,c12,c11,p1b)〉

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 142 / 168

Problems and Solutions
Solution Plan Example (2/2)

Example of tree decomposition for the solution plan π:

move-stack(p1a,q)

move-topmost-container(p1a,p1b) move-stack(p1a,p1b)

recursive-move(p1a,p1b,c11,c12)

take(crane1,l1a,c11,c12,p1a) put(crane1,l1b,c11,pallet,p1b) move-top-container(p1a,p1b)

take(crane1,l1a,c12,pallet,p1a) put(crane1,l1b,c12,c11,p1b)

move-stack(p1a,p1b)

take-and-put(...) recursive-move(p1a,p1b,c12,pallet)

take-and-put(...)
do-nothing(p1a,p1b)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 143 / 168

Total-Order STN Planning
Total-order Forward Decomposition

Algorithm (TFD(s, 〈t1, . . . , t2〉, O, M))

if k = 0 then return an empty plan π = 〈〉
else if t1 is primitive then

active ← {(a, σ) | a is a ground instance of an operator in O, σ is a
substitution such that a is revelant for σ(t1), and a is applicable to s }

if active = ∅ then return Failure
nondeterministically choose any (a, σ) ∈ active
π ← TFD(γ(s, a), σ(〈t2, . . . , tk〉),O,M)
if π = Failure then return Failure else return a · π

else if t1 is nonprimitive then
active ← {(m, σ) | m is a ground instance of a method in M, σ is a

substitution such that m is revelant for σ(t1), and m is applicable to s }
if active = ∅ then return Failure
nondeterministically choose any (m, σ) ∈ active
w ← subtasks(m)·σ(〈t2, . . . , tk〉)
return TFD(s,w ,O,M)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 144 / 168

Total-Order STN Planning
TFD Comparaison

1 Like Forward-search, TFD considers only actions whose preconditions are
satisfied in the current state. Moreover, like Backward-search, it considers
only operators that revelant for the task to achieve

⇒ greatly increase the efficiency of the search

2 Like Forward-search, TFD generates actions in the same order in which they
will be executed

⇒ it knows the current state of the world

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 145 / 168

Partial-Order STN Planning

Why partial-order planning is interested to be considered ?

⇒ because not all planning domains can be rewritten into total-order planning

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 146 / 168

Partial-Order STN Planning
Example (1/5)

Consider the following initial state for the DWR domain:

r1

l1

c1 c2c1

p11 p12

l2

crane1 crane2

p21

p22

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 147 / 168

Partial-Order STN Planning
Example (2/5)

Example (DWR methods to move two containers at once)

transfer2(c1,c2,l1,l2,r) ;; method to transfert c1 and c2

task: transfer-two-containers(c1,c2,l1,l2,r)
precond: ;; no preconditions
subtasks: 〈transfer-one-container(c1,l1,l2,r), transfer-one-container(c2,l1,l2,r)〉

transfer1(c,l1,l2,r) ;; method to transfert c

task: transfer-one-container(c,l1,l2,r)
precond: ;; no preconditions
network: u1 = setup(c,r), u2 = move-robot(l1,l2), u3 = finish(c,r),

{(u1, u2), (u2, u3)}
move1(r,l1,l2) ;; method to move r if r is not at l2

task: move-robot(l1,l2)
precond: at(r,l1)
subtasks: 〈move(r,l1,l2)〉

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 148 / 168

Partial-Order STN Planning
Example (3/5)

Example (DWR methods to move two containers at once)

move0(r,l1,l2) ;; method to move r if r is already at l2

task: move-robot(l1,l2)
precond: at(r,l2)
subtasks: 〈〉 ;; no subtasks

do-setup(c,d,k,l,p,r) method to prepare for moving a container

task: setup(c,r)
precond: on(c,d), in(c,p), belong(k,l), attached(p,l), at(r,l)
network: u1 = take(k,l,c,r), u2 = put(k,l,c,d,p), {(u1, u2)}

unload-robot(c,d,k,l,p,r) ;; method to finish after moving a container

task: finish(c,r)
precond: attached(p,l), loaded(r,c), top(d,p), belong(k,l), at(r,l)
network: u1 = unload(k,l,c,r), u2 = put(k,l,c,d,p), {(u1, u2)}

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 149 / 168

Partial-Order STN Planning
Example (4/5)

transfer-two-containers(c1,c2,l1,l2,r1)

transfer-one-container(c1,l1,l2,r1) transfer-one-container(c2,l1,l2,r1)

take(...) load(...)

setup(c1,r1)

unload(...) put(...)

move(r,l1,l2)

take(...) load(...) unload(...) put(...)

setup(c2,r1) finish(c1,r1) finish(c2,r1)

Interleaved Decomposition Tree

The subtasks of the root are unordered, and their subtasks are interleaved

Decomposition tree like this cannot occur in total-order STN planning domain

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 150 / 168

Partial-Order STN Planning
Example (5/5)

transfer-two-containers(c1,c2,l1,l2,r1)

setup-both-containers(c1,c2,r1) finish-both-containers(c1,c2,r1)

take(...) load(...)

setup(c1,r1)

unload(...) put(...)

move(r,l1,l2)

take(...) load(...) unload(...) put(...)

setup(c2,r1) finish(c1,r1) finish(c2,r1)

Noninterleaved Decomposition Tree

To obtain a totally ordered tree, the best is to write method that generate a
noninterleaved decomposition tree

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 151 / 168

Partial-Order STN Planning
Partial-order Forward Decomposition

Algorithm (PFD(s, w , O, M))

if w = ∅ then return an empty plan π = 〈〉
nondeterministically choose any u ∈ w that as no predessors in w
else if t1 is primitive task then

active ← {(a, σ) | a is a ground instance of an operator in O, σ is a
substitution such that a is revelant for σ(t1), and a is applicable to s }

if active = ∅ then return Failure
nondeterministically choose any (a, σ) ∈ active
π ← PFD(γ(s, a), σ(w − {u}),O,M)
if π = Failure then return Failure else return a · π

else if t1 is nonprimitive then
active ← {(m, σ) | m is a ground instance of a method in M, σ is a

substitution such that m is revelant for σ(t1), and m is applicable to s }
if active = ∅ then return Failure
nondeterministically choose any (m, σ) ∈ active
nondeterministically choose any task network w ′ ∈ δ(w , u,m, σ)
return PFD(s,w ′,O,M)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 152 / 168

HTN Planning

In STN planning, two kinds of constraints are associated with a method:
1 preconditions
2 ordering constraints

Ordering constraints are explicitely represented in the task network but not
preconditions

HTN planning is a generalization of SNT planning that give the planning
procedure more freedom about how to construct the task network

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 153 / 168

HTN Planning
Task Network Definition

Definition
A task network is a pair

w = (U,C)

where

U is a set of task nodes and

C is a set of constraints.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 154 / 168

HTN Planning
Task Network Constraints

HTN Task Network can handle the following kinds of constraints:
1 A precedence constraint is an expression of the form u ≺ v , where u and v are

task node. Its meaning is identical to the edge (u, v) in STN planning.
2 A before-constraint is a generalization of the notion of a precondition in STN

planning. It is a constraint of the form before(U ′, l), where U ′ ⊆ U is a set of
task nodes and l is a literal.

Example

For instance, consider the task u is a task node for which tu = move(r2,l2,l3). Then the
constraints before({u}, at(r2,l2)) says that r2 must be at l2 just before we move it from
l2 to l3.

3 An after-constraint has the form after(U ′, l). It is like a before-constraint
except that it says that l must be true in the state that occurs just after last
(U ′, π)

4 A between-constraint has the form between(U ′, U ′′, l). It says that literal l
must be true in the state just after last (U ′, π), the state just before first
(U ′′, π) and all of the states in between

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 155 / 168

HTN Methods
HTN Method Definition

Definition (HTN Method)

An HTN method is a 4-tuple

m = (name(m), task(m), subtasks(m), constr(m))

in which the elements are described as follows:

name(m), the name of the method, i.e., , a expression if the form
m(x1, . . . , x2) where n is an unique method symbol and x1, . . . , x2 are all of
the variables symbols that occurs anywhere in m

task(m) is a non primitive task

(subtasks(m), constr(m)) is a task network

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 156 / 168

HTN Methods
Dynamic of HTN Method

Suppose that w = (U,C) is a task network, u ∈ U is a task node, tu is it task, m
is an instance of a method in M, and task(m) = tu. Then m decomposes u into
subtasks(m′), producing the task network:

δ(w , u,m) = ((U − {u}) ∪ subtasks(m′),C ′ ∪ constr(m′))

where C ′ is the following modified version of C :
For every precedence constraint that constains u, replace it with precedence
constraints containing the node of subtasks(m′)

Example

If subtasks(m′) = {u1, u2}, then we would replace u ≺ v with u1 ≺ v and u2 ≺ v

For every before, after, between constraints in which there is a set of task
nodes U ′ that contains u, replace U ′ with (U ′ − {u}) ∪ subtasks(m′)

Example

If subtasks(m′) = {u1, u2}, then we would replace before({u, v}, l) with before({u1, u2, v}, l)

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 157 / 168

HTN Methods
HTN Method Example (1/2)

Example (DWR HTN Methods of example slide 6)

transfer2(c1,c2,l1,l2,r) ;; method to move c1 and c2 from pile p1 to pile p2

task: transfer-two-containers(c1,c2,l1,l2,r)
substasks: u1 = transfer-one-container(c1,l1,l2,r), u2 =

transfer-one-container(c2,l1,l2,r)
constr: u1 ≺ u2

transfer1(c,l1,l2,r) ;; method to transfert c

task: transfer-one-container(c,l1,l2,r)
subtasks: u1 = setup(c,r), u2 = move-robot(l1,l2), u3 = finish(c,r)
constr: u1 ≺ u2 u2 ≺ u3

move1(r,l1,l2) ;; method to move r if r is not at l2

task: move-robot(l1,l2)
subtasks: move(r,l1,l2)
constr: before({u1}, at(r,l1))

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 158 / 168

HTN Methods
HTN Method Example (2/2)

Example (DWR HTN Methods of example slide 6)

move0(r,l1,l2) ;; method to move r if r is already at l2

task: move-robot(l1,l2)
subtasks: ;; no subtasks
constr: before({u0}, at(r,l2))

do-setup(c,d,k,l,p,r) method to prepare for moving a container

task: setup(c,r)
subtasks: u1 = take(k,l,c,r), u2 = put(k,l,c,d,p)
network: u1 ≺ u2, before({u1}, on(c,d)), before({u1}, attached(p,l)),

before({u1}, in(c,p)), before({u1}, belong(k,l)), before({u1}, at(r,l))

unload-robot(c,d,k,l,p,r) ;; method to finish after moving a container

task: finish(c,r)
subtasks: u1 = unload(k,l,c,r), u2 = put(k,l,c,d,p)
network: u1 ≺ u2, before({u1}, attached(p,l)), before({u1}, loaded(r,c)),

before({u1}, top(d,p)), before({u1}, belong(k,l)), before({u1}, at(r,l))

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 159 / 168

HTN Planning Domain and Problem Definition

Definition (HTN Planning Domain)

An HTN planning domain is a pair D = (O,M) where

O is a set of operators

M is a set of methods.

Definition (HTN Planning Problem)

An HTN planning problem is a 4-tuple P = (s0,w ,O,M) where

s0 is the initial state

w is a task network called the initial task network

D = (O,M) is a STN planning domain

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 160 / 168

HTN Solution Plan Definition (1/2)

Definition (HTN Solution Plan)

Case 1: If w = (U,C) is primitive, then a plan π = 〈a1, . . . , ak〉 is a solution
for P if there is a ground instance (U ′,C ′) of (U,C) and a total ordering
〈u1, . . . , uk〉 of the node U ′ such that all the following condition hold:

1 The action in π are the ones named by the node u1, . . . , uk , i.e.,
name(ai) = tui for i = 1, . . . k

2 The plan π is executable from s0

3 The total ordering 〈u1, . . . , uk〉 satisfies the precedence constraints in C ′, i.e.,
C ′ contains no constraint ui ≺ uj such that j ≤ i

4 For every constraints before(U ′, l) in C ′, l holds in the state si−1 that
immediately precedes action ai , where ai is the action named by the first node
of U ′.

5 For every constraints after(U ′, l) in C ′, l holds in the state sj produced by the
action aj , where aj is the action named by the last node of U ′.

6 For every constraints between(U ′, U ′′, l) in C ′, l holds in every state that
comes between ai and aj , where ai is the action named by the last node of U ′

and aj the action named by the first node of U ′′.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 161 / 168

HTN Solution Plan Definition (2/2)

Definition (HTN Solution Plan)

Case 2: If w = (U,C) is nonprimitive, (i.e., al least one task in U is
nonprimitive), then a plan π is a solution for P if there is a sequence of task
decompositions that can be applied to w to produce primitive task network
w ′ such taht π is a solution for w ′. In this case, the decomposition tree for π
is the tree structure corresponding to these task decompositions.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 162 / 168

HTN Planning Procedure

Algorithm (Abstract-HTN(s, U , C , O, M))

if (U,C) can be shown to have no solution then return Failure
else if U is primitive then

if (U,C) has no solution then return Failure
else return nondeterministically a plan π from any such solution

else
choose a nonprimitive task node u ∈ U
active ← {m ∈ M | task(m) is unifiable with tu}
if active 6= ∅ then nondeterministically choose any m ∈ active
σ ← an mgu for m and tu that renames all variables of m
(U ′,C ′)← δ(σ(U,C), σ(u), σ(m))
return Abstract-HTN(s,U ′,C ′,O,M)

end

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 163 / 168

HTN versus Classical Planning
STN planning and thus HTN planning can be used to encode undecidable
problem, but not classical planning

However STN and HTN language can produce undesirable effects

Example (Recursive method calls)
method1()

task: task1()
precond: ;; no preconditions
subtasks: op1(), task1(),

op2()

op1()

precond: ;; no preconditions
effects: ;; no effects

method2()

task: task1()
precond: ;; no preconditions
subtasks: ;; no subtasks

op2()

precond: ;; no preconditions
effects: ;; no effects

The solutions to this problem are as follows:

π0 = 〈〉
π1 = 〈op1(), op2()〉
π2 = 〈op1(), op1(), op2(), op2()〉

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 164 / 168

Complexity of plan existance for HTN planning

Restrictions Must the
on nonprimitive HTNs be Are variables allowed?
tasks totally ordered ? No Yes

No Undecidablea Undecidablea,b

None Yes In exptime in dexptimed

pspace-hard expspace-hard
“Regularity” (≤ 1
nonprimitive task, Does not pspace- expspace-
which must follow matter complete completec

all primitive tasks)
No nonprimitive No NP-complete NP-complete
tasks Yes Polynomial time NP-complete

a Decidable if we impose acyclic restrictions

b Undecidable even when the planning domain is fixed in advance

c In pspace when the planning domain is fixed in advance, and pspace-complete for some fixed planning domains

d dexptime means double-exponential time

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 165 / 168

HTN Plannin Extensions

The main extensions of HTN planning are:
1 Function Symbols. If we allow the planning language to contain function

symbols, then aguments of an atom, or task are no longer restricted to being
constant symbol of variable symbols.

2 Axioms. To incorporate axiomatic inference, we will need to used theorem
prover as a subroutine of the planning procedure.

3 Attached Procedures. We can modify the precondition evaluation algorithm to
recognize that certain terms or predicate symbols are to be evaluated by using
attached procedure rather that by using the normal theorem prover.

4 Time. It is possible to generalize PFD and Abstract-HTN to certain kinds of
temporal planning, e.g., to deal with action that have time durations and may
overlap with each other.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 166 / 168

Exercices

Exercice 1
Write totally ordered methods to generate the noninterleaved decomposition tree
similar to the one shown slide 13.

Exercice 2
Suppose we write a deterministic implementation of TFD that does a depth-first
search of its decomposition tree. Is this implementation complete ? Why or why
not ?

Exercice 3
In example slide 5, suppose we allow the initial state to contain an atom
need-to-move(p,q) for each stack of the containers that needs to be moved from
som pile p to some other q. Rewrite the methods and operators so that instead of
being restricted to work on three stacks of containers, they will work correctly for
an arbitrary number of stacks and containers.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 167 / 168

Further readings

D. Nau and T. Au and O. Ilghami and U. Kuter and W. Murdock and D. Wu
and Y. Yaman
Shop2: An HTN planning system
Journal of Artificial Intelligence Research 20(1):379-404, 2003

E. Sacerdoti.
The nonlinear nature of plans.
In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 206 214, 1975.

Damien Pellier (MASTER II Info.) Automated Planning – Master II Info. 168 / 168

	Introduction and Overview
	First Intuitions on Planning
	Intuitive Planning Definition
	Automated Planning Motivations
	Form of Planning

	Domain-Independent Planning
	Domain Specific Approaches
	Domain Independent Approaches

	Conceptual Model of Planning
	State Transition System
	Graphical Representation of Planning Model
	Restricted Models

	Further readings

	Classical Representation for Planning
	Set-Theoretic Representation
	Planning Domains
	Planning Problems
	Plans and Solutions
	Properties of the Set Theoric Representation

	Classical Representation
	State Representation
	Operators and Actions
	Domains and Problems
	Extending the Classical Representation

	To go further
	Further readings

	State Space Planning
	Forward Search
	Forward Search Principle
	Forward Search Algorithm
	Forward Search Example

	Backward Search
	Backward Search Principle and Algorithm
	Backward Search Example

	STRIPS Algorithm
	STRIPS Algorithm Principle
	STRIPS Algorithm
	Sussman Anomaly

	To go further
	
	

	Plan Space Planning
	Plans Planning Principle
	Plan Space First Intuition
	Partial Plan
	Solution Plans

	Algorithms for Plan Space Planning
	PSP Principle
	PSP Algorithm

	To go further
	
	

	Heuristics in Planning
	Design Principle for Heuristics : Relaxation
	Heuristics for State-Space Planning
	State Reachability Relaxation
	Heuristics Guided Forward Search
	Heuristics Guided Backward Search
	Admissible State-Space Heuristics
	Graphplan as Heuristics Search Planner

	Heuristics for Plan-Space Planning
	Flaw-Selection Heuristics
	Resolver-Selection Heuristics

	To go further
	
	

	Hierarchical Task Network Planning
	STN Planning
	Tasks and Methods
	Problems and Solutions

	Total-Order STN Planning
	Partial-Order STN Planning
	HTN STN Planning
	Task Networks
	HTN Methods
	HTN Problems and Solutions
	HTN Planning procedures

	Comparaison and extensions of HTN Planning
	To go further
	
	

