Lecture slides for Automated Planning: Theory and Practice

Chapter 3 Complexity of Classical Planning

Dana S. Nau

CMSC 722, AI Planning University of Maryland, Spring 2008

Review: Classical Representation

- Function-free first-order language L
- Statement of a classical planning problem: $P = (s_0, g, O)$
- s_0 : initial state a set of ground atoms of L
- g: goal formula a set of literals
- Operator: (name, preconditions, effects)

```
take(crane1,loc1,c3,c1,p1)

;; crane crane1 at location loc1 takes c3 off c1 in pile p1
precond: belong(crane1,loc1), attached(p1,loc1),
empty(crane1), top(c3,p1), on(c3,c1)
effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1),
¬top(c3,p1), ¬on(c3,c1), top(c1,p1)
```

• Classical planning problem: $\mathcal{P} = (\Sigma, s_0, S_g)$

Review: Set-Theoretic Representation

- Like classical representation, but restricted to propositional logic
- State: a set of propositions these correspond to ground atoms
 - ◆ {on-c1-pallet, on-c1-r1, on-c1-c2, ..., at-r1-l1, at-r1-l2, ...}
- No operators, just actions

```
take-crane1-loc1-c3-c1-p1
precond: belong-crane1-loc1, attached-p1-loc1,
empty-crane1, top-c3-p1, on-c3-c1
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1
```

- Weaker representational power than classical representation
 - Problem statement can be exponentially larger

Review: State-Variable Representation

- A state variable is like a record structure in a computer program
 - Instead of on(c1,c2) we might write cpos(c1)=c2
- Load and unload operators:

```
\begin{aligned} & \operatorname{load}(c,r,l) \\ & \operatorname{grobot} r \operatorname{loads} \operatorname{container} c \operatorname{ at location } l \\ & \operatorname{precond:} \operatorname{rloc}(r) = l, \operatorname{cpos}(c) = l, \operatorname{rload}(r) = \operatorname{nil} \\ & \operatorname{effects:} & \operatorname{rload}(r) \leftarrow c, \operatorname{cpos}(c) \leftarrow r \end{aligned} & \operatorname{unload}(c,r,l) \\ & \operatorname{grobot} r \operatorname{unloads} \operatorname{container} c \operatorname{ at location } l \\ & \operatorname{precond:} \operatorname{rloc}(r) = l, \operatorname{rload}(r) = c \\ & \operatorname{effects:} & \operatorname{rload}(r) \leftarrow \operatorname{nil}, \operatorname{cpos}(c) \leftarrow l \end{aligned}
```

- Equivalent power to classical representation
 - Each representation requires a similar amount of space
 - ◆ Each can be translated into the other in low-order polynomial time
- Classical representation is more popular, mainly for historical reasons
 - In many cases, state-variable representation is more convenient

Motivation

 Recall that in classical planning, even simple problems can have huge search spaces

- Example:
 - » DWR with five locations, three piles, three robots, 100 containers
 - **»** 10²⁷⁷ states
 - » About 10¹⁹⁰ times as many states as there are particles in universe

location 1 location

- How difficult is it to solve classical planning problems?
- The answer depends on which representation scheme we use
 - Classical, set-theoretic, state-variable

Outline

- Background on complexity analysis
- Restrictions (and a few generalizations) of classical planning
- Decidability and undecidability
- Tables of complexity results
 - Classical representation
 - Set-theoretic representation
 - State-variable representation

Complexity Analysis

- Complexity analyses are done on *decision problems* or *language-recognition problems*
 - lack A language is a set L of strings over some alphabet A
 - \bullet Recognition procedure for L
 - » A procedure R(x) that returns "yes" iff the string x is in L
 - » If x is not in L, then R(x) may return "no" or may fail to terminate
- Translate classical planning into a language-recognition problem
- Examine the language-recognition problem's complexity

Planning as a Language-Recognition Problem

Consider the following two languages:

PLAN-EXISTENCE = $\{P : P \text{ is the statement of a planning problem that has a solution}\}$

PLAN-LENGTH = $\{(P,n) : P \text{ is the statement of a planning problem that has a solution of length } \leq n\}$

- Look at complexity of recognizing PLAN-EXISTENCE and PLAN-LENGTH under different conditions
 - ◆ Classical, set-theoretic, and state-variable representations
 - Various restrictions and extensions on the kinds of operators we allow

Complexity of Language-Recognition Problems

- ullet Suppose R is a recognition procedure for a language L
- Complexity of *R*
 - ◆ $T_R(n)$ = worst-case runtime for R on strings in L of length n
 - $S_R(n)$ = worst-case space requirement for R on strings in L of length n
- Complexity of recognizing L
 - T_L = best asymptotic time complexity of any recognition procedure for L
 - S_L = best asymptotic space complexity of any recognition procedure for L

Complexity Classes

Complexity classes:

```
    NLOGSPACE (nondeterministic procedure, logarithmic space)
    ⊆ P (deterministic procedure, polynomial time)
    ⊆ NP (nondeterministic procedure, polynomial time)
    ⊆ PSPACE (deterministic procedure, polynomial space)
    ⊆ EXPTIME (deterministic procedure, exponential time)
    ⊆ NEXPTIME (nondeterministic procedure, exponential time)
    ⊆ EXPSPACE (deterministic procedure, exponential space)
```

- Let C be a complexity class and L be a language
 - Recognizing L is C-hard if for every language L' in C, L' can be reduced to L in a polynomial amount of time
 - » NP-hard, PSPACE-hard, etc.
 - ◆ Recognizing *L* is *C*-complete if *L* is *C*-hard and *L* is also in *C*
 - » NP-complete, PSPACE-complete, etc.

Possible Conditions

- Do we give the operators as input to the planning algorithm, or fix them in advance?
- Do we allow infinite initial states? ◆ These take us outside classical
- Do we allow function symbols?
- Do we allow negative effects?
- Do we allow negative preconditions?
- Do we allow more than one precondition?
- Do we allow operators to have conditional effects?*
 - i.e., effects that only occur when additional preconditions are true

planning

Decidability of Planning

Can cut off the search at every path of length *n* Halting problem Decidability of Allow function Decidability of symbols? PLAN-LENGTH PLAN-EXISTENCE no^{α} decidable decidable decidable semidecidable β yes

Next: analyze complexity for the decidable cases

^αThis is ordinary classical planning.

 $^{^{\}beta}$ True even if we make several restrictions (see text).

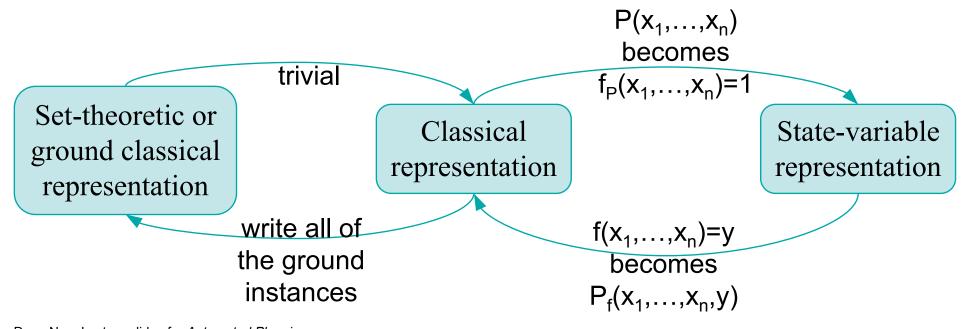
Complexity of Planning

^γ PSPACE-complete or NP-complete for some sets of operators

Kind of	How the	Allow	Allow	Complexity	Complexity
represen-	operators	negative	negative	of PLAN-	of FLAN-
tation	are given	effects?	precon-	EXISTENCE	LENGTH
			ditions?		
		yes	yes/no	EXPSPACE-	NEXPTIME-
classical				complete	complete
rep.	in the		yes	NEXPTIME-	NEXPTIME-
	input			complete /	complete
		no	no	EXPTIME-	NEXPTIME-
				complete	complete
α no operator has >1 precondition no^{α}				PSPACE-	PSPACE-
·				complete	complete
		yes	yes/no	PSPACE $^{\gamma}$	PSPACE $^{\gamma}$
	in		yes	NP $^{\gamma}$	NP ^γ
	advance	no \	no	P	NP $^{\gamma}$
			no^{α}	NLOGSPACE	NP

- Caveat: these are worst-case results
 - Individual planning domains can be much easier
- Example: both DWR and Blocks World fit here, but neither is that hard

◆ For them, PLAN-EXISTENCE is in P and PLAN-LENGTH is NP-complete


Kind of	How the	Allow	Allow	Complexity	Complexity
represen-	operators	negative	negative	of PLAN-	of PLAN-
tation	are given	effects?	precon-	EXISTENCE	LENGTH
			ditions?		
		yes	yes/no	EXPSPACE-	NEXPTIME-
classical				complete	complete
rep.	in the		yes	NEXPTIME-	NEXPTIME-
	input			complete	complete
		no	no	EXPTIME-	NEXPTIME-
				complete	complete
			no^{α}	PSPACE-	PSPACE-
			↓	complete	complete
		yes	yes/no	PSPACE $^{\gamma}$	PSPACE $^{\gamma}$
	in		yes	NP ^{γ}	NP ^{γ}
	advance	no	no	P	NP ^{γ}
			no^{α}	NLOGSPACE	NP

- Often PLAN-LENGTH is harder than PLAN-EXISTENCE
- But it's easier here:
 - ♦ We can cut off every search path at depth n

Kind of	How the	Allow	Allow	Complexity	Complexity
represen-	operators	negative	negative	of PLAN-	of PLAN-
tation	are given	effects?	precon-	EXISTENCE	LENGTH
			ditions?		_
		yes	yes/no	EXPSPACE-	NEXPTIME-
classical				complete	complete
rep.	in the		yes	NEXPTIME-	NEXPTIME-
	input			complete	complete
		no	no	EXPTIME-	NEXPTIME-
				complete	complete
			no^{α}	PSPACE-	PSPACE-
				complete	complete
		yes	yes/no	PSPACE $^{\gamma}$	PSPACE $^{\gamma}$
	in		yes	NP ^{γ}	NP ^{γ}
	advance	no	no	P	NP ^{γ}
			no^{α}	NLOGSPACE	NP

Equivalences

- Set-theoretic representation and ground classical representation are basically identical
 - ◆ For both, exponential blowup in the size of the input
 - Thus complexity looks smaller as a function of the input size
- Classical and state-variable representations are equivalent, except that some of the restrictions aren't possible in state-variable representations
 - ◆ Hence, fewer lines in the table

Kind of	How the	Allow	Allow	Complexity	Complexity
represen-	operators	negative	negative	of PLAN-	of PLAN-
tation	are given	effects?	precon-	EXISTENCE	LENGTH
			ditions?		
		yes	yes/no	PSPACE-	PSPACE-
set-				complete	complete
theoretic	in the		yes	NP-complete	NP-complete
or	input	no	no	P	NP-complete
ground			no^{α}/no^{β}	NLOGSPACE-	NP-
classical			7	complete	complete
rep.	in	yes/no /	yes/no	constant	constant
	advance			time	time
state-	in the	yes^{δ}	yes/no	EXPSPACE-	NEXPTIME-
variable	input			complete	complete
rep.	in	yes^{δ}	yes/no	PSPACE $^{\gamma}$	PSPACE $^{\gamma}$
	advance				
ground	in the	yes^{δ}	yes/no	PSPACE-	PSPACE-
state-	input /			complete	complete
variable	in	yes^δ	yes/no	constant	constant
rep.	advance			time	time

Like classical rep, but fewer lines in the table

 $^{\alpha}$ no operator has >1 precondition

 $^{\beta}$ every operator with >1 precondition is the composition of other operators