# Introduction to Scheduling, Scheduling Algorithms 

Jiří Vokřínek<br>A4M33PAH - 26.3.2012

## Planning and Scheduling

- planning
- problem: search for feasible set of actions fulfilling a goal
- plan: partially ordered set of actions
- actions: fully instantiated operators
- scheduling:
- problem: find an assignment of resources to actions
- plan: sequence of resource-action assignment in time
- can be modelled as parameters of an action
- problem: planning algorithms tries out all possibilities (inefficient)
- alternative approach:
- allow unbound resource variables in plan (planning)
- find assignment of resources to actions (scheduling)


## Planning Techniques

- project planning
- Material Resource Planning (MRP)
- batch scheduling
- task ordering
- room scheduling
- notch planning
- project planning techniques:
- Gantt charts

- Program Evaluation and Review Technique
- critical path analyses


## Gantt Chart



## Program Evaluation and Review Technique (PERT)




## Actions and Resources

- resources: an entity needed to perform an action
- state variables: modified by actions in absolute ways
- example: move(r,, , ${ }^{\prime}$ '):
- location changes from / to $l$ '
- resource variables: modified by actions in relative ways
- example: move( $\left.r, 1, l^{\prime}\right)$ :
- fuel level changes from $f$ to $f-f^{\prime}$


## Actions with Time Constraints

- Let $a$ be an action in a planning domain:
- attached time constraints:
- earliest start time: $s_{\text {min }}(a)$ - actual start time: $s(a)$
- latest end time: $s_{\max }(a)$ - actual end time: $e(a)$
- duration: $d(a)$
- action types:
- preemptive actions: cannot be interrupted
- $d(a)=e(a)-s(a)$
- non-preemptive actions: can be interrupted
- resources available to other actions during interruption


## Actions with Resource Constraints

- Let $a$ be an action in a planning domain:
- attached resource constraints:
- required resource: $r$
- quantity of resource required: $q$
- reusable: resource will be available to other actions after this action is completed
 M. Husak
1 (27 stod.)

M. Pechouček
1 (23 stud.)
- consumable: resource will be consumed when action is complete



## Reusable Resources

- resource availability:
- total capacity: $Q_{r}$
- current level at time $t: z_{r}(t)$
- resource requirements:
- require $(a, r, q)$ : action $a$ requires $q$ units of resource $r$ while it is active
- resource profile:



## Consumable Resources

- resource availability:
- total reservoir at $t_{0}: Q_{r}$
- current level at time $t: z_{r}(t)$
- resource consumption/production:
- consume $(a, r, q)$ : action $a$ requires $q$ units of resource $r$
- produce $(a, r, q)$ : action $a$ produces $q$ units of resource $r$
- resource profile:



## Other Resource Features

- discrete vs. continuous
- countable number of units: cranes, bolts
- real-valued amount: bandwidth, electricity
- unary
$-Q_{r}=1$; exactly one resource of this type available
- sharable
- can be used by several actions at the same time
- resources with states
- actions may require resources in specific state


## Combining Resource Constraints

- conjunction:
- action uses multiple resources while being performed
- disjunction:
- action requires resources as alternatives
- cost/time may depend on resource used
- resource types:
- resource-class $(s)=\left\{r_{1}, \ldots, r_{m}\right\}$ : require $(a, s, q)$
- equivalent to disjunction over identical resources


## Cost Functions and Optimization Criteria

- cost function parameters
- quantity of resource required
- duration of requirement
- optimization criteria:
- total schedule cost
- makespan (end time of last action)
- weighted completion time
- (weighted) number of late actions
- (weighted) maximum tardiness
- resource usage


## Planning vs. Scheduling

- Planning
- feasibility of plan for ONE goal
- duration (number of actions) in a plan
- Scheduling
- utilization of resource(s) for ALL plans
- total schedule cost or duration
- It is hard to optimize both together ...


## Machine Scheduling

- machine: resource of unit capacity
- either available or not available at time $t$
- cannot process two actions at the same time
- job $j$ : partially ordered set of actions $a_{j 1}, \ldots, a_{j k}$
- action $a_{j i}$ requires
- one resource type
- for a number of time units
- actions in same job must be processed sequentially
- actions in different jobs are independent (not ordered)
- machine scheduling problem:
- given: $n$ jobs and $m$ machines
- schedule: mapping from actions to machines + start times


## Material Resource Planning

- machine: resource of countable capacity
- available amount $r_{i}$ at time $t_{i}$
- can process any number of actions at the same time if $r_{i}>=0$
- job $j$ : partially ordered set of actions $a_{j 1}, \ldots, a_{j k}$
- action $a_{j i}$ requires
- I resource types of $q$ number each
- for a number of time units
- actions in same job must be processed sequentially
- actions in different jobs are independent (not ordered)
- material resource planning problem:
- given: $n$ jobs and $m$ machines
- supply report: consumption of resources capacity by actions in time


## Example: Scheduling Problem

- machines:
$-m_{1}$ of resource type $r_{1}$
$-m_{2}, m_{3}$ of resource type $r_{2}$
- jobs:

$$
-j_{1}:\left\langle r_{1}(3), r_{2}(3), r_{1}(3)\right\rangle
$$

- three actions, totally ordered
- $a_{11}$ requires 3 units of resource type 1 , etc.
$-j_{2}:\left\langle r_{2}(3), r_{1}(5)\right\rangle$
$-j_{3}:\left\langle r_{1}(3), r_{1}(2), r_{2}(3), r_{1}(5)\right\rangle$


## Example: Schedules by Job

- machines:
$-m_{1}$ of type $r_{1}$
- $m_{2}$ of type $r_{2}$

- jobs:

$$
\begin{aligned}
& -j_{1}:\left\langle r_{1}(1), r_{2}(2)\right\rangle \\
& -j_{2}:\left\langle r_{1}(3), r_{2}(1)\right\rangle
\end{aligned}
$$



## Example: Schedules by Machine

- machines:
$-m_{1}$ of type $r_{1}$
$-m_{2}$ of type $r_{2}$
- jobs:

$$
\begin{aligned}
& -j_{1}:\left\langle r_{1}(1), r_{2}(2)\right\rangle \\
& -j_{2}:\left\langle r_{1}(3), r_{2}(1)\right\rangle
\end{aligned}
$$

## Assignable Actions

- Let $P$ be a machine scheduling problem. Let $S$ be a partially defined schedule.
- An action $a_{j i}$ of some job $j_{l}$ in $P$ is unassigned if it does not appear in $S$.
- An action $a_{j i}$ of some job $j_{l}$ in $P$ is assignable if it has no unassigned predecessors in $S$.


## Example: Assignable Actions

- problem $P$ :
- machines:
- $m_{1}$ of type $r_{1}$
- $m_{2}$ of type $r_{2}$
- jobs:
- $j_{1}:\left\langle r_{1}(1), r_{2}(2)\right\rangle$
- $j_{2}:\left\langle r_{1}(3), r_{2}(1)\right\rangle$
- $j_{3}:\left\langle r_{1}(3), r_{2}(1), r_{1}(3)\right\rangle$
partial schedule $S$ :

- unassigned:
- $a_{22}, a_{31}, a_{32}, a_{33}$
- assignable:
- $a_{22}, a_{31}$


## Earliest Assignable Time

- Let $a_{j i}$ be an assignable action in $S$. The earliest assignable time for $a_{j i}$ on machine $m$ in $S$ is:
- the end of the last action currently scheduled on $m$ in $S$, or
- the end of the last predecessor $\left(a_{j 0} \ldots a_{j i-1}\right)$ in S , or
- the earliest start time $s_{\text {min }}\left(a_{j i}\right)$,
whichever comes later.


## Example: Earliest Assignable Time

- problem $P$
(R2|prec|C_max):
- machines:
- $m_{1}$ of type $r_{1}$
- $m_{2}$ of type $r_{2}$
- jobs:
- $j_{1}:\left\langle r_{1}(1), r_{2}(2)\right\rangle$
- $j_{2}:\left\langle r_{1}(3), r_{2}(1)\right\rangle$
- $j_{3}:\left\langle r_{1}(3), r_{2}(1), r_{1}(3)\right\rangle$
partial schedule $S$ :

- earliest assignable time for

$$
a_{22} \text { on } m_{2}: 4
$$

- earliest assignable time for $a_{31}$ on $m_{1}: 4$


## Heuristic Search

heuristicScheduler $(P, S)$
assignables $\leftarrow P$.getAssignables $(S)$
if assignables.isEmpty() then return $S$
action $\leftarrow$ assignables.selectOne()
machines $\leftarrow$ P.getMachines(action)
machine $\leftarrow$ machines.selectOne()
time $\leftarrow$ S.getEarliestAssignableTime(action, machine)
$\mathrm{S} \leftarrow \mathrm{S}+$ assign(action, machine, time)
return heuristicScheduler $(P, S)$

## Scheduling Algorithms

- First In, First Out (FIFO) known also as First Come, First Served (FCFS)
- Last In, First Out (LIFO)
- Shortest Remaining Time First (SRTF), Shortest Job First (SJF)
- priority ordering
- Round-robin (RR) scheduling
- critical path priority ordering


## Scheduling Algorithms

- scheduling problem $\boldsymbol{\alpha} / \boldsymbol{\beta} / \boldsymbol{\gamma}$
- $\alpha$ - machine environment: 1 (single machine), $\mathbf{P m}$ ( $m$ identical machines), $\mathbf{Q m}$ (as $P$ with different speeds), Rm (as P, but unrelated)
- $\beta$ - problem specs: $\boldsymbol{r}_{\boldsymbol{i}}$ (release time), $\boldsymbol{d}_{\boldsymbol{i}}$
(deadline), pmtn (preemptive), size $_{\boldsymbol{i}}$ (multimachine), prec (precedences), ...
- $\gamma$ - objective function: $C_{\max }, L_{\max }, \boldsymbol{E}_{\max }, \boldsymbol{T}_{\text {max }}$
$\sum C_{i}, \sum L_{i}, \sum E_{i}, \sum T_{i}$,


## Example: FCFS

- First In, First Out (FIFO) known also as First Come, First Served (FCFS)
- problem - average waiting time depends on arrival order
- advantage - simple algorithm



## Example: LIFO

- Last In, First Out (LIFO)
- problem - early processes may never be served (for dynamic scheduling)
- advantage - newly arrived jobs have low response times



## Example: SJF

- Shortest Job First (SJF)
- provably optimal for minimizing average waiting time



## Example: SRTF

- Shortest Remaining Time First (SRTF)
- preemptive variant of SJF
- $s_{\text {min }}\left(\dot{j}_{2}\right)=10$



## Example: critical path

- problem $P$ (P|prec|C_max):
- job:
- $j:\left\langle a_{1}(1), a_{2}(2), a_{3}(3), a_{4}(1), a_{5}(3), a_{6}(1), a_{7}(3)\right\rangle$
- $a_{1}<a_{2}, a_{2}<a_{3}, a_{1}<a_{4}, a_{4}<a_{5}, a_{5}<a_{7}, a_{6}<a_{7}, a_{3}<a_{7}$



## Example: critical path

- problem $P$ (P|prec|C_max):
- job:
- $j:\left\langle a_{1}(1), a_{2}(2), a_{3}(3), a_{4}(1), a_{5}(3), a_{6}(1), a_{7}(3)\right\rangle$
- $a_{1}<a_{2}, a_{2}<a_{3}, a_{1}<a_{4}, a_{4}<a_{5}, a_{5}<a_{7}, a_{6}<a_{7}, a_{3}<a_{7}$

critical path length: 9


## Example: critical path

- problem $P$ (1|prec|C_max, P2|prec|C_max):
- job:
- $j:\left\langle a_{1}(1), a_{2}(2), a_{3}(3), a_{4}(1), a_{5}(3), a_{6}(1), a_{7}(3)\right\rangle$
- $a_{1}<a_{2}, a_{2}<a_{3}, a_{1}<a_{4}, a_{4}<a_{5}, a_{5}<a_{7}, a_{6}<a_{7}, a_{3}<a_{7}$
- machines: $m_{1}$ of one type (upper-bound schedule length =14)

- machines: $m_{1}, m_{2}$ of the same type
- (with unlimited machines: lower-bound schedule length =9)



## Literature

- Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning - Theory and Practice, chapter 15. Elsevier/Morgan Kaufmann, 2004.
- Michael Pinedo. Scheduling: Theory, Algorithms and Systems, Prentice Hall, 2001.
- Peter Brucker. Scheduling Algorithms, Springer Verlag, 2004.

