Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

where σ means standard deviation.
Having template $T(k, l)$ and image $I(x, y)$,

$$
r(x, y)=\frac{\sum_{k} \sum_{l}(T(k, l)-\bar{T})(I(x+k, y+l)-\overline{I(x, y)})}{\sqrt{\sum_{k} \sum_{l}(T(k, l)-\bar{T})^{2}} \sqrt{\sum_{k} \sum_{l}(I(x+k, y+l)-\overline{I(x, y)})^{2}}}
$$

ncc - remind the notes from statistics ...
Image intensities, though organized in a matrix form, can be re-arranged into vectors. Best visualized with plots. Remember variance, correlation?

Sketch about coordinate systems

Original Lucas-Kanade algorithm III

$$
\sum_{\mathbf{x}}[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}+\Delta \mathbf{p}))-T(\mathbf{x})]^{2}
$$

linearization by performing first order Taylor expansion ${ }^{6}$

$$
\sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I^{\top} \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2}
$$

$\nabla I^{\top}=\left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]$ is the gradient image computed at $\mathbf{W}(\mathbf{x} ; \mathbf{p})$. The term $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ is the Jacobian of the warp.

[^0]
Taylor series and gradient of a compound funtion

Few notes that may help in understanding of the derivation. General first order Taylor series expansion of a scalar-valued function f of more than one variable (\mathbf{x}, \mathbf{a} are vectors):

$$
\begin{equation*}
T(\mathbf{x})=f(\mathbf{a})+(\mathbf{x}-\mathbf{a})^{\top} D f(\mathbf{a}) \tag{1}
\end{equation*}
$$

where $D f(\mathbf{a})$ is the gradient of f evaluated at $\mathbf{x}=\mathbf{a}$.
Gradient of a function f is a vector of partial derivatives

$$
\begin{equation*}
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots\right)^{\top} \tag{2}
\end{equation*}
$$

Gradient of a compound funtion (chain rule). Suppose that $f: A \rightarrow R$ is a real-valued function defined on a subset A of R^{n}, and that f is differentiable at a point \mathbf{a}. If function g is also differentiable and $g(\mathbf{c})=\mathbf{a}$ then for the gradient of the compound function hold

$$
\begin{equation*}
D(f \circ g)(\mathbf{c})=(D g(\mathbf{c}))^{\top} \nabla f(\mathbf{a}), \tag{3}
\end{equation*}
$$

where $(D g)^{\top}$ denotes the transpose of the Jacobian matrix.
Our problem is the linearization of the multidimensional warp that affects one pixel at a position $\mathbf{x}=(x, y)^{\top}, I(W(\mathbf{x}, \mathbf{p}+$ $\Delta \mathbf{p})$). Taylor expansion (1) becomes

$$
\begin{equation*}
T\left(\mathbf{p}^{k+1}\right)=I\left(\mathbf{p}^{k}\right)+\Delta \mathbf{p}^{\top} D I\left(\mathbf{p}^{k}\right) \tag{4}
\end{equation*}
$$

The inside function is the geometric warp hence, $g(\mathbf{p})=W(\mathbf{x}, \mathbf{p})$. From the above it follows that the linearization is

$$
\begin{equation*}
I(W(\mathbf{x}, \mathbf{p}+\Delta \mathbf{p})) \approx I(W(\mathbf{x}, \mathbf{p}))+\Delta \mathbf{p}^{\top} \frac{\partial W^{\top}}{\partial \mathbf{p}} \nabla I \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla I=\left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right)^{\top} \tag{6}
\end{equation*}
$$

is the image gradient and $\frac{\partial W}{\partial \mathbf{p}}$ is the Jacobian of the warp.

References

[^0]: ${ }^{6}$ Detailed explanation on the blackboard

