Social choice and voting mechanisms in multi-agent system

Michal Pechoucek, based on slides from Kevin Leyton Brown

Agent Technology Group, Czech Technical University in Prague

November 9, 2010

Introduction

Our setting now:

- a set of outcomes
- agents have preferences across them
- for the moment, we won't consider incentive issues:
- center knows agents' preferences, or they declare truthfully
- the goal: a social choice function: a mapping from everyone's preferences to a particular outcome, which is enforced
- how to pick such functions with desirable properties?

Formal model

Definition (Social choice function)

Assume a set of agents $N=\{1,2, \ldots, n\}$, and a set of outcomes (or alternatives, or candidates) O. Let L_{-}be the set of non-strict total orders on O. A social choice function (over N and O) is a function $C: L_{-}{ }^{n} \mapsto O$.

Definition (Social welfare function)

Let N, O, L_{-}be as above. A social welfare function (over N and $O)$ is a function $W: L_{-}{ }^{n} \mapsto L_{-}$.

Non-Ranking Voting Schemes

- Plurality
- pick the outcome which is preferred by the most people
- Cumulative voting
- distribute e.g., 5 votes each
- possible to vote for the same outcome multiple times
- Approval voting
- accept as many outcomes as you "like"

Ranking Voting Schemes

- Plurality with elimination ("instant runoff")
- everyone selects their favorite outcome
- the outcome with the fewest votes is eliminated
- repeat until one outcome remains
- Borda
- assign each outcome a number.
- The most preferred outcome gets a score of $n-1$, the next most preferred gets $n-2$, down to the $n^{\text {th }}$ outcome which gets 0 .
- Then sum the numbers for each outcome, and choose the one that has the highest score
- Pairwise elimination
- in advance, decide a schedule for the order in which pairs will be compared.
- given two outcomes, have everyone determine the one that they prefer
- eliminate the outcome that was not preferred, and continue with the schedule

Condorcet Condition

- If there is a candidate who is preferred to every other candidate in pairwise runoffs, that candidate should be the winner
- While the Condorcet condition is considered an important property for a voting system to satisfy, there is not always a Condorcet winner
- sometimes, there's a cycle where A defeats B, B defeats C, and C defeats A in their pairwise runoffs

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner?

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B
- What would win under plurality voting?

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B
- What would win under plurality voting? A

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B
- What would win under plurality voting? A
- What would win under plurality with elimination?

Condorcet example

$$
\begin{aligned}
499 \text { agents: } & A \succ B \succ C \\
3 \text { agents: } & B \succ C \succ A \\
498 \text { agents: } & C \succ B \succ A
\end{aligned}
$$

- What is the Condorcet winner? B
- What would win under plurality voting? A
- What would win under plurality with elimination? C

Lecture Overview

(1) Recap
(2) Analyzing Bayesian games
(3) Social Choice

4 Voting Paradoxes

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting?

Sensitivity to Losing Candidate

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- What candidate wins under plurality voting? A

Sensitivity to Losing Candidate

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting?

Sensitivity to Losing Candidate

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A

Sensitivity to Losing Candidate

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality?

Sensitivity to Losing Candidate

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality? B wins.

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C
- Who wins with the ordering A, C, B ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C
- Who wins with the ordering A, C, B ? B

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C
- Who wins with the ordering A, C, B ? B
- Who wins with the ordering B, C, A ?

Sensitivity to Agenda Setter

$$
\begin{array}{ll}
35 \text { agents: } & A \succ C \succ B \\
33 \text { agents: } & B \succ A \succ C \\
32 \text { agents: } & C \succ B \succ A
\end{array}
$$

- Who wins pairwise elimination, with the ordering A, B, C ? C
- Who wins with the ordering A, C, B ? B
- Who wins with the ordering B, C, A ? A

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ?

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.
- What is the problem with this?

Another Pairwise Elimination Problem

$$
\begin{array}{ll}
1 \text { agent: } & B \succ D \succ C \succ A \\
1 \text { agent: } & A \succ B \succ D \succ C \\
1 \text { agent: } & C \succ A \succ B \succ D
\end{array}
$$

- Who wins under pairwise elimination with the ordering A, B, C, D ? D.
- What is the problem with this?
- all of the agents prefer B to D-the selected candidate is Pareto-dominated!

Notation

- N is the set of agents
- O is a finite set of outcomes with $|O| \geq 3$
- L is the set of all possible strict preference orderings over O.
- for ease of exposition we switch to strict orderings
- we will end up showing that desirable SWFs cannot be found even if preferences are restricted to strict orderings
- [\succ] is an element of the set L^{n} (a preference ordering for every agent; the input to our social welfare function)
- \succ_{W} is the preference ordering selected by the social welfare function W.
- When the input to W is ambiguous we write it in the subscript; thus, the social order selected by W given the input [\succ^{\prime}] is denoted as $\succ_{W\left(\left[\succ^{\prime}\right]\right)}$.

Pareto Efficiency

Definition (Pareto Efficiency (PE))

W is Pareto efficient if for any $o_{1}, o_{2} \in O, \forall i o_{1} \succ_{i} o_{2}$ implies that $o_{1} \succ_{W} o_{2}$.

- when all agents agree on the ordering of two outcomes, the social welfare function must select that ordering.

Independence of Irrelevant Alternatives

Definition (Independence of Irrelevant Alternatives (IIA))

W is independent of irrelevant alternatives if, for any $o_{1}, o_{2} \in O$ and any two preference profiles $\left[\succ^{\prime}\right],\left[\succ^{\prime \prime}\right] \in L^{n}, \forall i\left(o_{1} \succ_{i}^{\prime} o_{2}\right.$ if and only if $o_{1} \succ_{i}^{\prime \prime} o_{2}$) implies that ($o_{1} \succ_{W\left(\left[\succ^{\prime}\right]\right)} o_{2}$ if and only if $\left.o_{1} \succ_{W\left(\left[\succ^{\prime \prime}\right]\right)} o_{2}\right)$.

- the selected ordering between two outcomes should depend only on the relative orderings they are given by the agents.

Nondictatorship

Definition (Non-dictatorship)

W does not have a dictator if $\neg \exists i \forall o_{1}, o_{2}\left(o_{1} \succ_{i} o_{2} \Rightarrow o_{1} \succ_{W} o_{2}\right)$.

- there does not exist a single agent whose preferences always determine the social ordering.
- We say that W is dictatorial if it fails to satisfy this property.

Lecture Overview

(1) Recap
(2) Fun Game
(3) Properties

4 Arrow's Theorem

Arrow's Theorem

Theorem (Arrow, 1951)

Any social welfare function W that is Pareto efficient and independent of irrelevant alternatives is dictatorial.

We will assume that W is both PE and IIA, and show that W must be dictatorial. Our assumption that $|O| \geq 3$ is necessary for this proof. The argument proceeds in four steps.

Arrow's Theorem, Step 1

Step 1: If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_{W} as well.

Consider an arbitrary preference profile [\succ] in which every voter ranks some $b \in O$ at either the very bottom or very top, and assume for contradiction that the above claim is not true. Then, there must exist some pair of distinct outcomes $a, c \in O$ for which $a \succ_{W} b$ and $b \succ_{W} c$.

Arrow's Theorem, Step 1

Step 1: If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_{W} as well.

Now let's modify $[\succ]$ so that every voter moves c just above a in his preference ranking, and otherwise leaves the ranking unchanged; let's call this new preference profile $\left[\succ^{\prime}\right]$. We know from IIA that for $a \succ_{W} b$ or $b \succ_{W} c$ to change, the pairwise relationship between a and b and/or the pairwise relationship between b and c would have to change. However, since b occupies an extremal position for all voters, c can be moved above a without changing either of these pairwise relationships. Thus in profile [$\left.\succ^{\prime}\right]$ it is also the case that $a \succ_{W} b$ and $b \succ_{W} c$. From this fact and from transitivity, we have that $a \succ_{W} c$. However, in [\succ^{\prime}] every voter ranks c above a and so PE requires that $c \succ_{W} a$. We have a contradiction.

Arrow's Theorem, Step 2

Step 2: There is some voter n^{*} who is extremely pivotal in the sense that by changing his vote at some profile, he can move a given outcome b from the bottom of the social ranking to the top.

Consider a preference profile $[\succ]$ in which every voter ranks b last, and in which preferences are otherwise arbitrary. By PE, W must also rank b last. Now let voters from 1 to n successively modify $[\succ]$ by moving b from the bottom of their rankings to the top, preserving all other relative rankings. Denote as n^{*} the first voter whose change causes the social ranking of b to change. There clearly must be some such voter: when the voter n moves b to the top of his ranking, PE will require that b be ranked at the top of the social ranking.

Arrow's Theorem, Step 2

Step 2: There is some voter n^{*} who is extremely pivotal in the sense that by changing his vote at some profile, he can move a given outcome b from the bottom of the social ranking to the top.

Denote by $\left[\succ^{1}\right.$] the preference profile just before n^{*} moves b, and denote by $\left[\succ^{2}\right]$ the preference profile just after n^{*} has moved b to the top of his ranking. In $\left[\succ^{1}\right], b$ is at the bottom in \succ_{W}. $\ln \left[\succ^{2}\right], b$ has changed its position in \succ_{W}, and every voter ranks b at either the top or the bottom. By the argument from Step 1, in $\left[\succ^{2}\right] b$ must be ranked at the top of \succ_{W}.

Profile $\left[\succ^{1}\right]$: Profile $\left[\succ^{2}\right]$:

Arrow's Theorem, Step 3

Step 3: n^{*} (the agent who is extremely pivotal on outcome b) is a dictator over any pair $a c$ not involving b.

We begin by choosing one element from the pair $a c$; without loss of generality, let's choose a. We'll construct a new preference profile $\left[\succ^{3}\right]$ from $\left[\succ^{2}\right]$ by making two changes. First, we move a to the top of $n^{* ' s}$ preference ordering, leaving it otherwise unchanged; thus $a \succ_{n^{*}} b \succ_{n^{*}} c$. Second, we arbitrarily rearrange the relative rankings of a and c for all voters other than n^{*}, while leaving b in its extremal position.

Profile $\left[\succ^{2}\right]$:
Profile $\left[\succ^{3}\right]$:

Arrow's Theorem, Step 3

Step 3: n^{*} (the agent who is extremely pivotal on outcome b) is a dictator over any pair $a c$ not involving b.

In $\left[\succ^{1}\right]$ we had $a \succ_{W} b$, as b was at the very bottom of \succ_{W}. When we compare $\left[\succ^{1}\right]$ to $\left[\succ^{3}\right]$, relative rankings between a and b are the same for all voters. Thus, by IIA, we must have $a \succ_{W} b$ in $\left[\succ^{3}\right]$ as well. $\ln \left[\succ^{2}\right]$ we had $b \succ_{W} c$, as b was at the very top of \succ_{W}. Relative rankings between b and c are the same in $\left[\succ^{2}\right]$ and $\left[\succ^{3}\right]$. Thus in $\left[\succ^{3}\right], b \succ_{W} c$. Using the two above facts about $\left[\succ^{3}\right]$ and transitivity, we can conclude that $a \succ_{W} c$ in $\left[\succ^{3}\right]$.

Profile $\left[\iota^{1}\right]$:
Profile $\left[\succ^{2}\right.$] :
Profile $\left[\succ^{3}\right]$:

Arrow's Theorem, Step 3

Step 3: n^{*} (the agent who is extremely pivotal on outcome b) is a dictator over any pair $a c$ not involving b.

Now construct one more preference profile, $\left[\succ^{4}\right]$, by changing $\left[\succ^{3}\right]$ in two ways. First, arbitrarily change the position of b in each voter's ordering while keeping all other relative preferences the same. Second, move a to an arbitrary position in n^{*} 's preference ordering, with the constraint that a remains ranked higher than c. Observe that all voters other than n^{*} have entirely arbitrary preferences in $\left[\succ^{4}\right]$, while n^{*} 's preferences are arbitrary except that $a \succ_{n^{*}} c$.

Arrow's Theorem, Step 3

Step 3: n^{*} (the agent who is extremely pivotal on outcome b) is a dictator over any pair $a c$ not involving b.
$\ln \left[\succ^{3}\right]$ and $\left[\succ^{4}\right]$ all agents have the same relative preferences between a and c; thus, since $a \succ_{W} c$ in $\left[\succ^{3}\right]$ and by IIA, $a \succ_{W} c$ in $\left[\succ^{4}\right]$. Thus we have determined the social preference between a and c without assuming anything except that $a \succ_{n^{*}} c$.

Profile $\left[\succ^{2}\right]$:
Profile $\left[\succ^{3}\right]$:
Profile $\left[\succ^{4}\right]$:

Arrow's Theorem, Step 4

Step 4: n^{*} is a dictator over all pairs $a b$.

Consider some third outcome c. By the argument in Step 2, there is a voter $n^{* *}$ who is extremely pivotal for c. By the argument in Step 3, $n^{* *}$ is a dictator over any pair $\alpha \beta$ not involving c. Of course, $a b$ is such a pair $\alpha \beta$. We have already observed that n^{*} is able to affect W^{\prime} 's $a b$ ranking-for example, when n^{*} was able to change $a \succ_{W} b$ in profile $\left[\succ^{1}\right]$ into $b \succ_{W} a$ in profile $\left[\succ^{2}\right]$. Hence, $n^{* *}$ and n^{*} must be the same agent.

