Social choice and voting mechanisms in multi-agent system

Michal Pechoucek, based on slides from Kevin Leyton Brown

Agent Technology Group, Czech Technical University in Prague

November 9, 2010

Introduction

Our setting now:

- a set of outcomes
- agents have preferences across them
- for the moment, we won't consider incentive issues:
 - center knows agents' preferences, or they declare truthfully
- the goal: a social choice function: a mapping from everyone's preferences to a particular outcome, which is enforced
 - how to pick such functions with desirable properties?

Formal model

Definition (Social choice function)

Assume a set of agents $N = \{1, 2, ..., n\}$, and a set of outcomes (or alternatives, or candidates) O. Let L_{-} be the set of non-strict total orders on O. A social choice function (over N and O) is a function $C : L_{-}^{n} \mapsto O$.

Definition (Social welfare function)

Let N, O, L_{-} be as above. A social welfare function (over N and O) is a function $W: L_{-}^{n} \mapsto L_{-}$.

Non-Ranking Voting Schemes

Plurality

• pick the outcome which is preferred by the most people

Cumulative voting

- distribute e.g., 5 votes each
- possible to vote for the same outcome multiple times

Approval voting

accept as many outcomes as you "like"

Ranking Voting Schemes

- Plurality with elimination ("instant runoff")
 - everyone selects their favorite outcome
 - the outcome with the fewest votes is eliminated
 - repeat until one outcome remains
- Borda
 - assign each outcome a number.
 - The most preferred outcome gets a score of n-1, the next most preferred gets n-2, down to the $n^{\rm th}$ outcome which gets 0.
 - Then sum the numbers for each outcome, and choose the one that has the highest score
- Pairwise elimination
 - in advance, decide a schedule for the order in which pairs will be compared.
 - given two outcomes, have everyone determine the one that they prefer
 - eliminate the outcome that was not preferred, and continue with the schedule

Condorcet Condition

- If there is a candidate who is preferred to every other candidate in pairwise runoffs, that candidate should be the winner
- While the Condorcet condition is considered an important property for a voting system to satisfy, there is not always a Condorcet winner
- sometimes, there's a cycle where A defeats B, B defeats C, and C defeats A in their pairwise runoffs

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

• What is the Condorcet winner?

Analyzing Bayesian Games; Social Choice

< ≣⇒

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

• What is the Condorcet winner? B

Analyzing Bayesian Games; Social Choice

< ≣⇒

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

- What is the Condorcet winner? B
- What would win under plurality voting?

 $\begin{array}{lll} \mbox{499 agents:} & A \succ B \succ C \\ \mbox{3 agents:} & B \succ C \succ A \\ \mbox{498 agents:} & C \succ B \succ A \end{array}$

- What is the Condorcet winner? B
- \bullet What would win under plurality voting? A

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

- What is the Condorcet winner? B
- \bullet What would win under plurality voting? A
- What would win under plurality with elimination?

499 agents:	$A \succ B \succ C$
3 agents:	$B \succ C \succ A$
498 agents:	$C \succ B \succ A$

- What is the Condorcet winner? B
- \bullet What would win under plurality voting? A
- \bullet What would win under plurality with elimination? C

Lecture Overview

- 2 Analyzing Bayesian games
- 3 Social Choice

-

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

• What candidate wins under plurality voting?

Analyzing Bayesian Games; Social Choice

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

\bullet What candidate wins under plurality voting? A

Analyzing Bayesian Games; Social Choice

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- \bullet What candidate wins under plurality voting? A
- What candidate wins under Borda voting?

35 agents:	$A \succ C \succ B$
33 agents:	$B \succ A \succ C$
32 agents:	$C \succ B \succ A$

- \bullet What candidate wins under plurality voting? A
- \bullet What candidate wins under Borda voting? A

 $\begin{array}{lll} \textbf{35 agents:} & A \succ C \succ B \\ \textbf{33 agents:} & B \succ A \succ C \\ \textbf{32 agents:} & C \succ B \succ A \end{array}$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality?

 $\begin{array}{lll} \textbf{35 agents:} & A \succ C \succ B \\ \textbf{33 agents:} & B \succ A \succ C \\ \textbf{32 agents:} & C \succ B \succ A \end{array}$

- What candidate wins under plurality voting? A
- What candidate wins under Borda voting? A
- Now consider dropping C. Now what happens under both Borda and plurality? B wins.

35 agents: $A \succ C \succ B$ 33 agents: $B \succ A \succ C$ 32 agents: $C \succ B \succ A$

• Who wins pairwise elimination, with the ordering A, B, C?

Analyzing Bayesian Games; Social Choice

35 agents: $A \succ C \succ B$ 33 agents: $B \succ A \succ C$ 32 agents: $C \succ B \succ A$

• Who wins pairwise elimination, with the ordering A, B, C? C

Analyzing Bayesian Games; Social Choice

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B?

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B? B

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B? B
- Who wins with the ordering B, C, A?

- Who wins pairwise elimination, with the ordering A, B, C? C
- Who wins with the ordering A, C, B? B
- Who wins with the ordering B, C, A? A

 $\begin{array}{ll} 1 \text{ agent:} & B \succ D \succ C \succ A \\ 1 \text{ agent:} & A \succ B \succ D \succ C \\ 1 \text{ agent:} & C \succ A \succ B \succ D \end{array}$

• Who wins under pairwise elimination with the ordering *A*, *B*, *C*, *D*?

 $\begin{array}{ll} 1 \text{ agent:} & B \succ D \succ C \succ A \\ 1 \text{ agent:} & A \succ B \succ D \succ C \\ 1 \text{ agent:} & C \succ A \succ B \succ D \end{array}$

• Who wins under pairwise elimination with the ordering A, B, C, D? D.

 $\begin{array}{ll} 1 \text{ agent:} & B \succ D \succ C \succ A \\ 1 \text{ agent:} & A \succ B \succ D \succ C \\ 1 \text{ agent:} & C \succ A \succ B \succ D \end{array}$

- Who wins under pairwise elimination with the ordering A, B, C, D? D.
- What is the problem with this?

 $\begin{array}{ll} 1 \text{ agent:} & B \succ D \succ C \succ A \\ 1 \text{ agent:} & A \succ B \succ D \succ C \\ 1 \text{ agent:} & C \succ A \succ B \succ D \end{array}$

- Who wins under pairwise elimination with the ordering A, B, C, D? D.
- What is the problem with this?
 - *all* of the agents prefer B to D—the selected candidate is Pareto-dominated!

B K K B K

Recap	Fun Game	Properties	Arrow's Theorem
Notation			

- N is the set of agents
- O is a finite set of outcomes with $|O|\geq 3$
- L is the set of all possible strict preference orderings over O.
 - for ease of exposition we switch to strict orderings
 - we will end up showing that desirable SWFs cannot be found even if preferences are restricted to strict orderings
- [≻] is an element of the set Lⁿ (a preference ordering for every agent; the input to our social welfare function)
- \succ_W is the preference ordering selected by the social welfare function W.
 - When the input to W is ambiguous we write it in the subscript; thus, the social order selected by W given the input $[\succ']$ is denoted as $\succ_{W([\succ'])}$.

Recap	Fun Game	Properties	Arrow's Theorem
Pareto E	fficiency		

Definition (Pareto Efficiency (PE))

W is Pareto efficient if for any $o_1, o_2 \in O$, $\forall i \ o_1 \succ_i o_2$ implies that $o_1 \succ_W o_2$.

• when all agents agree on the ordering of two outcomes, the social welfare function must select that ordering.

Independence of Irrelevant Alternatives

Definition (Independence of Irrelevant Alternatives (IIA))

W is independent of irrelevant alternatives if, for any $o_1, o_2 \in O$ and any two preference profiles $[\succ'], [\succ''] \in L^n$, $\forall i (o_1 \succ'_i o_2)$ if and only if $o_1 \succ''_i o_2$) implies that $(o_1 \succ_{W([\succ'])} o_2)$ if and only if $o_1 \succ_{W([\succ''])} o_2$).

• the selected ordering between two outcomes should depend only on the relative orderings they are given by the agents.

Recap	Fun Game	Properties	Arrow's Theorem
Nondictate	orship		

Definition (Non-dictatorship)

W does not have a dictator if $\neg \exists i \forall o_1, o_2(o_1 \succ_i o_2 \Rightarrow o_1 \succ_W o_2)$.

- there does not exist a single agent whose preferences always determine the social ordering.
- We say that W is dictatorial if it fails to satisfy this property.

Arrow's Theorem

Lecture Overview

Lecture 12, Slide 17

イロト イヨト イヨト イヨト

æ

Arrow's Impossibility Theorem

Arrow's Theorem

Theorem (Arrow, 1951)

Any social welfare function W that is Pareto efficient and independent of irrelevant alternatives is dictatorial.

We will assume that W is both PE and IIA, and show that W must be dictatorial. Our assumption that $|O| \ge 3$ is necessary for this proof. The argument proceeds in four steps.

Step 1: If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_W as well.

Consider an arbitrary preference profile $[\succ]$ in which every voter ranks some $b \in O$ at either the very bottom or very top, and assume for contradiction that the above claim is not true. Then, there must exist some pair of distinct outcomes $a, c \in O$ for which $a \succ_W b$ and $b \succ_W c$.

Step 1: If every voter puts an outcome b at either the very top or the very bottom of his preference list, b must be at either the very top or very bottom of \succ_W as well.

Now let's modify $[\succ]$ so that every voter moves c just above a in his preference ranking, and otherwise leaves the ranking unchanged; let's call this new preference profile $[\succ']$. We know from IIA that for $a \succ_W b$ or $b \succ_W c$ to change, the pairwise relationship between a and b and/or the pairwise relationship between b and c would have to change. However, since b occupies an extremal position for all voters, c can be moved above a without changing either of these pairwise relationships. Thus in profile $[\succ']$ it is also the case that $a \succ_W b$ and $b \succ_W c$. From this fact and from transitivity, we have that $a \succ_W c$. However, in $[\succ']$ every voter ranks cabove a and so PE requires that $c \succ_W a$. We have a contradiction.

★@→ ★ E→ ★ E→ E

Step 2: There is some voter n^* who is extremely pivotal in the sense that by changing his vote at some profile, he can move a given outcome b from the bottom of the social ranking to the top.

Consider a preference profile $[\succ]$ in which every voter ranks b last, and in which preferences are otherwise arbitrary. By PE, W must also rank b last. Now let voters from 1 to n successively modify $[\succ]$ by moving b from the bottom of their rankings to the top, preserving all other relative rankings. Denote as n^* the first voter whose change causes the social ranking of b to change. There clearly must be some such voter: when the voter n moves b to the top of his ranking, PE will require that b be ranked at the top of the social ranking.

▲圖▶ ▲屋▶ ▲屋▶

Step 2: There is some voter n^* who is extremely pivotal in the sense that by changing his vote at some profile, he can move a given outcome b from the bottom of the social ranking to the top.

Denote by $[\succ^1]$ the preference profile just before n^* moves b, and denote by $[\succ^2]$ the preference profile just after n^* has moved b to the top of his ranking. In $[\succ^1]$, b is at the bottom in \succ_W . In $[\succ^2]$, b has changed its position in \succ_W , and every voter ranks b at either the top or the bottom. By the argument from Step 1, in $[\succ^2]$ b must be ranked at the top of \succ_W .

Profile $[\succ^2]$: \downarrow^b \downarrow^b \downarrow^c \downarrow^c

イロン イ部ン イヨン イヨン 三日

Step 3: n^* (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

We begin by choosing one element from the pair ac; without loss of generality, let's choose a. We'll construct a new preference profile $[\succ^3]$ from $[\succ^2]$ by making two changes. First, we move a to the top of n^* 's preference ordering, leaving it otherwise unchanged; thus $a \succ_{n^*} b \succ_{n^*} c$. Second, we arbitrarily rearrange the relative rankings of a and c for all voters other than n^* , while leaving b in its extremal position.

イロン イヨン イヨン イヨン

Step 3: n^* (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

In $[\succ^1]$ we had $a \succ_W b$, as b was at the very bottom of \succ_W . When we compare $[\succ^1]$ to $[\succ^3]$, relative rankings between a and b are the same for all voters. Thus, by IIA, we must have $a \succ_W b$ in $[\succ^3]$ as well. In $[\succ^2]$ we had $b \succ_W c$, as b was at the very top of \succ_W . Relative rankings between b and c are the same in $[\succ^2]$ and $[\succ^3]$. Thus in $[\succ^3]$, $b \succ_W c$. Using the two above facts about $[\succ^3]$ and transitivity, we can conclude that $a \succ_W c$ in $[\succ^3]$.

Step 3: n^* (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

Now construct one more preference profile, $[\succ^4]$, by changing $[\succ^3]$ in two ways. First, arbitrarily change the position of b in each voter's ordering while keeping all other relative preferences the same. Second, move a to an arbitrary position in n^* 's preference ordering, with the constraint that a remains ranked higher than c. Observe that all voters other than n^* have entirely arbitrary preferences in $[\succ^4]$, while n^* 's preferences are arbitrary except that $a \succ_{n^*} c$.

Step 3: n^* (the agent who is extremely pivotal on outcome b) is a dictator over any pair ac not involving b.

In $[\succ^3]$ and $[\succ^4]$ all agents have the same relative preferences between a and c; thus, since $a \succ_W c$ in $[\succ^3]$ and by IIA, $a \succ_W c$ in $[\succ^4]$. Thus we have determined the social preference between a and c without assuming anything except that $a \succ_{n^*} c$.

Profile $[\succ^1]$:					Profile $[\succ^2]$:						Profile $[\succ^3]$:						Profile $[\succ^4]$:					
1.6	∎ b			• •		1 b	b b	1 b	1.4			ь	1 b	1 a	1.0	1					1 C	•
1		1.		!	1	1								10	1					6		
i i		- i .		i i	i	i –		i.	i	i	i	i i	10	-i	i	i i	i	- i	۰ i	° 1	i	i i
· · ·			-	. ···		1 C		c				a		1.0	1	- C		· · · · ·	. !	c		• e
	- 1 -	- 1			C.			1.		c				1		0		. 1	° .		u i	a .
1		- i .		i –	-i -	11		i	- i	· i	i			-i -	- i	- i		- i	a i	i i	Б	i -
1 - I	i i	- 0	5	6	6				l b	∎ b			- i	1	6	1.6	11	· 1		· 1	i i	•
1	n'-1	n^{*}	n	+ 1	N	1	n'-1	n^{*}	n [*] +1	N			n'-1	n^*	n"+ 1	N	1	n'-	1 n	' n'	+1	N

Arrow's Theorem

Arrow's Theorem, Step 4

Step 4: n^* is a dictator over all pairs ab.

Consider some third outcome c. By the argument in Step 2, there is a voter n^{**} who is extremely pivotal for c. By the argument in Step 3, n^{**} is a dictator over any pair $\alpha\beta$ not involving c. Of course, ab is such a pair $\alpha\beta$. We have already observed that n^* is able to affect W's ab ranking—for example, when n^* was able to change $a \succ_W b$ in profile $[\succ^1]$ into $b \succ_W a$ in profile $[\succ^2]$. Hence, n^{**} and n^* must be the same agent.