
Distributed Constraints

Distributed Constraints

José M Vidal

Department of Computer Science and Engineering, University of South Carolina

January 15, 2010

Abstract

Algorithms for solving distributed constraint problems in
multiagent systems. Chapter 2.



Distributed Constraints

Constraint Satisfaction

Centralized

Outline



Distributed Constraints

Constraint Satisfaction

Centralized

Graph Coloring



Distributed Constraints

Constraint Satisfaction

Centralized

Graph Coloring



Distributed Constraints

Constraint Satisfaction

Centralized

Constraint Satisfaction Problem (CSP)

Given variables x1,x2, . . .xn with domains D1,D2, . . .Dn and a set of
boolean constraints P of the form pk(xk1,xk2, . . . ,xkj)→ {0,1}, find
assignments for all the variables such that no constraints are
violated.



Distributed Constraints

Constraint Satisfaction

Centralized

Depth First Search for the CSP

---(i,g)

1 if i > n
2 then return g
3 for v ∈ Di

4 do if setting xi ← v does not violate any constraint in P given g
5 then g′← ---(i +1,g + {xi ← v})
6 if g′ , ∅
7 then return g′

8
9 return ∅



Distributed Constraints

Constraint Satisfaction

Distributed

Outline



Distributed Constraints

Constraint Satisfaction

Distributed

Definition (Distributed Constraint Satisfaction Problem (DCSP))

Give each agent one of the variables in a CSP. Agents are
responsible for finding a value for their variable and can find out the
values of their neighbors’ via communication



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

Outline



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

(xi ,xj)

1 old-domain← Di

2 for vi ∈ Di

3 do if there is no vj ∈ Dj consistent with vi

4 then Di ← Di −vi

5 if old-domain , Di

6 then ∀k∈{neighbors of i}k .--(i,Di)



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

x1

x2 x3

x3

x2

x1

x3

x2

x1

x3

x2

x1



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

x1

x2 x3

x3

x2

x1

x3

x2

x1

x3

x2

x1

(x1,x3)



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

x1

x2 x3

x3

x2

x1

x3

x2

x1

x3

x2

x1

(x1,x3)



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

x1

x2 x3

x3

x2

x1

x3

x2

x1

x3

x2

x1

(x1,x3)
Communicate



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

x1

x2 x3

x3

x2

x1

x3

x2

x1

x3

x2

x1

(x1,x3)

(x2,x3)



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

x1

x2 x3

x3

x2

x1

x3

x2

x1

x3

x2

x1

(x1,x3)

(x2,x3)



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

x1

x2 x3

Filtering fails to detect no-solution.



Distributed Constraints

Constraint Satisfaction

Filtering Algorithm

x1

x2 x3

Filtering fails to detect no-solution.



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Outline



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Definition (k -consistency)

Given any instantiation of any k −1 variables that satisfy all
constraints it is possible to find an instantiation of any kth variable
such that all k variable values satisfy all constraints.



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Definition (Strongly k -consistent)

A problem is strongly k -consistent if it is j-consistent for all j ≤ k .



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Definition (Hyper-Resolution Rule)

A1∨A2∨ · · ·∨Am

¬(A1∧A11∧ · · ·)

¬(A2∧A21∧ · · ·)

:

¬(Am ∧Am1∧ · · ·)

¬(A11∧ · · ·∧A21∧ · · ·∧Am1∧ · · ·)
.



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

x1

� �

x2

� �

x3

� �



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x2 = �∧x3 = �)

x1

� �

x2

� �

x3

� �

x1

x1 = �∨x1 = �

¬(x1 = �∧x2 = �)

¬(x1 = �∧x3 = �)

¬(x2 = �∧x3 = �)

Dzekyl
Cross-Out

Dzekyl
Replacement Text
3



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �)

x1

� �

x2

� �

x3

� �

x1

Sends ¬(x2 = �∧x3 = �) to x2 and x3.



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �)

¬(x3 = �)

x1

� �

x2

� �

x3

� �

x2

x2 = �∨x2 = �

¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �)

¬(x3 = �)



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �) ¬(x3 = �)

x1

� �

x2

� �

x3

� �

x1

x1 = �∨x1 = �

¬(x1 = �∧x2 = �)

¬(x1 = �∧x3 = �)

¬(x2 = �∧x3 = �)



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �) ¬(x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �)

x1

� �

x2

� �

x3

� �

x1

Sends ¬(x2 = �∧x3 = �) to x2 and x3.



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �) ¬(x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �)

¬(x3 = �)

x1

� �

x2

� �

x3

� �

x2

x2 = �∨x2 = �

¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �)

¬(x3 = �)



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �) ¬(x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �) ¬(x3 = �)

¬(x3 = �) ¬(x3 = �)

x1

� �

x2

� �

x3

� �

x2

Sends ¬(x3 = �) and ¬(x3 = �) to x3.



Distributed Constraints

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

x1 x2 x3

x1 = �∨x1 = � x2 = �∨x2 = � x3 = �∨x3 = �

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �) ¬(x1 = �∧x2 = �)

¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �) ¬(x3 = �) ¬(x2 = �∧x3 = �)

¬(x2 = �∧x3 = �) ¬(x3 = �)

¬(x3 = �) ¬(x3 = �)

x1

� �

x2

� �

x3

� �

x3

x3 = �∨x3 = �

¬(x3 = �)

¬(x3 = �)

Contradiction



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Outline



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Backtracking



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Backtracking



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Backtracking



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Backtracking



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Backtracking



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Backtracking

?



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Backtracking



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Backtracking



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Agent Variables

priority: the agent’s fixed priority number. All agents are
ordered.

local-view: current values of other agents’ variables.

current-value: current value of agent’s variable.

neighbors: initially, the set of agents with whom agent shares
a constraint.



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Remote Calls

-?(j,xj) This message asks the receiver if that
assignment does not violate any of his constraints.

-(j,nogood) which means that j is reporting that it
can’t find a value for his variable because of nogood.

--(j) which requests the agent to add some
other agent j as its neighbor.



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

-?(j,xj)

1 local-view ← local-view +(j,xj)
2 --()



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

--()

1 if local-view and xi are not consistent
2 then if no value in Di is consistent with local-view
3 then ()
4 else select d ∈ Di consistent with local-view
5 xi ← d
6 ∀k∈neighbors k .-?(i,xi)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

-(j,nogood)

1 record nogood as a new constraint
2 for (k ,xk ) ∈ nogood where k < neighbors
3 do k .--(i)
4 neighbors← neighbors +k
5 local-view ← local-view +(k ,xk )
6 old-value← xi

7 --()
8 if old-value , xi

9 then j.-?(i,xi)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

()

1 nogoods← {V |V = inconsistent subset of local-view using hyper-resolution rule}
2 if an empty set is an element of nogoods
3 then broadcast that there is no solution
4 terminate this algorithm
5 for V ∈ nogoods
6 do select (j,xj) where j has lowest priority in V
7 j.-(i,V)
8 local-view ← local-view−(j,xj)
9 --()



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Example

x1

� �

x2

� �

x3

�

x2 x3

ok
?(

x 2
,�

) ok?(x
3 ,�

)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
)Added link

ok?(x2,�)

local-view = (x2,�)
nogood(x2,�)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Example

x1

� �

x2

� �

x3

�

x2 x3

ok
?(

x 2
,�

) ok?(x
3 ,�

)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
)Added link

ok?(x2,�)

local-view = (x2,�)
nogood(x2,�)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Example

x1

� �

x2

� �

x3

�

x2 x3

ok
?(

x 2
,�

) ok?(x
3 ,�

)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
)Added link

ok?(x2,�)

local-view = (x2,�)
nogood(x2,�)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Example

x1

� �

x2

� �

x3

�

x2 x3

ok
?(

x 2
,�

) ok?(x
3 ,�

)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
)Added link

ok?(x2,�)

local-view = (x2,�)
nogood(x2,�)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Example

x1

� �

x2

� �

x3

�

x2 x3

ok
?(

x 2
,�

) ok?(x
3 ,�

)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
)

Added link

ok?(x2,�)

local-view = (x2,�)
nogood(x2,�)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Example

x1

� �

x2

� �

x3

�

x2 x3

ok
?(

x 2
,�

) ok?(x
3 ,�

)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
)Added link

ok?(x2,�)

local-view = (x2,�)
nogood(x2,�)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Example

x1

� �

x2

� �

x3

�

x2 x3

ok
?(

x 2
,�

) ok?(x
3 ,�

)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
)Added link

ok?(x2,�)

local-view = (x2,�)

nogood(x2,�)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Example

x1

� �

x2

� �

x3

�

x2 x3

ok
?(

x 2
,�

) ok?(x
3 ,�

)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
)Added link

ok?(x2,�)

local-view = (x2,�)
nogood(x2,�)



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Theorem (ABT is Complete)

The ABT algorithm always finds a solution if one exists and
terminates with the appropriate message if there is no solution.

Proof.

By induction. First show that the agent with the highest priority
never enters an infinite loop. Then show that given that all the
agents with lower priority that k never fall into an infinite loop then
k will not fall into an infinite loop. �



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Outline



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Asynchronous Weak-Commitment (AWC)

Use dynamic priorities.

Change ok? messages to include agent’s current priority.

Use min-conflict heuristic.



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

--

1 if xi is consistent with local-view
2 then return
3 if no value in Di is consistent with local-view
4 then ()
5 else select d ∈ Di consistent with local-view

and which minimizes constraint
violations with lower priority agents.

6 xi ← d
7 ∀k∈neighbors k .-?(i,xi ,priority)



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search



1 generate a nogood V
2 if V is empty nogood
3 then broadcast that there is no solution
4 terminate this algorithm
5 if V is a new nogood
6 then ∀(k ,xk )∈V k .-(i, j,priority)
7 priority ← 1+max{neighbors ’priorities}
8 select d ∈ Di consistent with local-view

and which minimizes constraint
violations with lower priority agents.

9 xi ← d
10 ∀k∈neighbors k .-?(i,xi ,priority)



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Example

x1

� �

x2

� �

x3

�

priority = 0

priority = 0 priority = 0

x2 x3

ok
?(

x 2
,�
,0

) ok?(x
3 ,�
,0)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
),1

priority = 1

Added link

ok?(x2,�,0)

local-view = (x2,�)
nogood(x2,�)

priority = 2



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Example

x1

� �

x2

� �

x3

�

priority = 0

priority = 0 priority = 0

x2 x3

ok
?(

x 2
,�
,0

) ok?(x
3 ,�
,0)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
),1

priority = 1

Added link

ok?(x2,�,0)

local-view = (x2,�)
nogood(x2,�)

priority = 2



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Example

x1

� �

x2

� �

x3

�

priority = 0

priority = 0 priority = 0

x2 x3

ok
?(

x 2
,�
,0

) ok?(x
3 ,�
,0)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
),1

priority = 1

Added link

ok?(x2,�,0)

local-view = (x2,�)
nogood(x2,�)

priority = 2



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Example

x1

� �

x2

� �

x3

�

priority = 0

priority = 0 priority = 0

x2 x3

ok
?(

x 2
,�
,0

) ok?(x
3 ,�
,0)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
),1

priority = 1

Added link

ok?(x2,�,0)

local-view = (x2,�)
nogood(x2,�)

priority = 2



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Example

x1

� �

x2

� �

x3

�

priority = 0

priority = 0 priority = 0

x2 x3

ok
?(

x 2
,�
,0

) ok?(x
3 ,�
,0)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
),1

priority = 1

Added link

ok?(x2,�,0)

local-view = (x2,�)
nogood(x2,�)

priority = 2



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Example

x1

� �

x2

� �

x3

�

priority = 0

priority = 0 priority = 0

x2 x3

ok
?(

x 2
,�
,0

) ok?(x
3 ,�
,0)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
),1

priority = 1

Added link

ok?(x2,�,0)

local-view = (x2,�)
nogood(x2,�)

priority = 2



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Example

x1

� �

x2

� �

x3

�

priority = 0

priority = 0 priority = 0

x2 x3

ok
?(

x 2
,�
,0

) ok?(x
3 ,�
,0)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
),1

priority = 1

Added link

ok?(x2,�,0)

local-view = (x2,�)

nogood(x2,�)

priority = 2



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Example

x1

� �

x2

� �

x3

�

priority = 0

priority = 0

priority = 0

x2 x3

ok
?(

x 2
,�
,0

) ok?(x
3 ,�
,0)

local-view = (x2,�),(x3,�)

nogood
(x

2
=
�
∧

x
3
=
�
),1

priority = 1

Added link

ok?(x2,�,0)

local-view = (x2,�)
nogood(x2,�)

priority = 2



Distributed Constraints

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Theorem (AWC is complete)

The AWC algorithm always finds a solution if one exists and
terminates with the appropriate message if there is no solution.

Proof.

The priority values are changed if and only if a new nogood is
found. Since the number of possible nogoods is finite the priority
values cannot be changed indefinitely. When the priority values are
stable AWC becomes ABT, which is complete. �



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Outline



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Hill Climbing

?

?

?



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Hill Climbing

?

?

?



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Hill Climbing

?

?

?



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Hill Climbing

?

?

?



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Hill Climbing

?

?

?



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Hill Climbing

?

?

?



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Hill Climbing

?

?

?



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Definition (Quasi-local-minimum)

An agent xi is in a quasi-local-minimum if it is violating some
constraint and neither it nor any of its neighbors can make a
change that results in lower cost for all.



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Remote Procedure Calls

-?(i,xi) where i is the agent and xi is its current value,

-(i, improve,eval) where improve is the maximum
i could gain by changing to some other color and eval is its
current cost.



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

-?(j,xj)

1 received-ok [j]← 
2 agent-view ← agent-view +(j,xj)
3 if ∀k∈neighbors received-ok [k ] = 
4 then -()
5 ∀k∈neighbors received-ok [k ]← 



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

-()

1 cost ← evaluation of xi given current weights and values.
2 my-improve ← possible maximal improvement
3 new-value ← value that gives maximal improvement
4 ∀k∈neighbors k .-(i,my-improve,cost)



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

-(j, improve,eval)

1 received-improve[j]← improve
2 if ∀k∈neighbors received-improve[k ] , 
3 then -
4 agent-view ← ∅
5 ∀k∈neighbors received-improve[k ]← 



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

-()

1 if ∀k∈neighbors my-improve ≥ received-improve[k ]
2 then xi ← new-value
3 if cost > 0∧∀k∈neighbors received-improve[k ] ≤ 0 B quasi-local opt.
4 then increase weight of constraint violations
5 ∀k∈neighbors k .-?(i,xi)



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Example

3

2 5

4

1 6

1

1

1 1

1

1
11

1

1

1 1

1

1



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Example

3

2 5

4

1 6

1

1

2 2

1

1
22

1

1

2 2

1

1



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Example

3

2 5

4

1 6

1

1

2 2

1

1
22

1

1

2 2

1

1



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Example

3

2 5

4

1 6

1

1

2 2

1

1
22

1

1

2 2

1

1



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Theorem (Distributed Breakout is not Complete)

Distributed breakout can get stuck in local optima. Therefore, there
are cases where a solution exists and it cannot find it.

Proof.

By example. �

In practice, its really good.



Distributed Constraints

Constraint Satisfaction

Distributed Breakout

Theorem (Distributed Breakout is not Complete)

Distributed breakout can get stuck in local optima. Therefore, there
are cases where a solution exists and it cannot find it.

Proof.

By example. �

In practice, its really good.



Distributed Constraints

Distributed Constraint Optimization

Centralized

Outline



Distributed Constraints

Distributed Constraint Optimization

Centralized

Definition (Constraint Optimization Problem (COP))

Given variables x1,x2, . . .xn with domains D1,D2, . . .Dn and a set of
constraints P of the form pk(xk1,xk2, . . . ,xkj)→<, find
assignments for all the variables such that the sum of the
constraint values is minimized.



Distributed Constraints

Distributed Constraint Optimization

Centralized

---()

1 c∗ ←∞ B Minimum cost found. Global variable.
2 g∗ ← ∅ B Best solution found. Global variable.
3 ----(1,∅)
4 return g∗

----(i,g)

1 if i = n
2 then if P(g) < c∗

3 then g∗← g
4 c∗← P(g)
5 return
6 for v ∈ Di

7 do g′← g + {xi ← v}
8 if P(g) < c∗

9 then ----(i +1,g′)



Distributed Constraints

Distributed Constraint Optimization

Centralized

Definition (Distributed Constraint Optimization Problem (DCOP))

Give each agent one of the variables in a COP. Agents are
responsible for finding a value for their variable and can find out the
values of their neighbors’ via communication



Distributed Constraints

Distributed Constraint Optimization

Adopt

Outline



Distributed Constraints

Distributed Constraint Optimization

Adopt

Remote Procedure Calls

threshold tell children how much cost they can incur, ignore
anything that costs more than that.

value tell descendants what value agent sets itself to.

cost tell parent lower and upper bounds of cost given the
current value assignments of ancestors.



Distributed Constraints

Distributed Constraint Optimization

Adopt

di dj p(di ,dj)

0 0 1
0 1 2
1 0 2
1 1 0

x1 = 0

x2 = 1 x3 = 0

x4 = 1

p p

p

p



Distributed Constraints

Distributed Constraint Optimization

Adopt

di dj p(di ,dj)

0 0 1
0 1 2
1 0 2
1 1 0

x1 = 0

x2 = 0

x3 = 0 x4 = 0

p

p

p p



Distributed Constraints

Distributed Constraint Optimization

Adopt

di dj p(di ,dj)

0 0 1
0 1 2
1 0 2
1 1 0

x1 = 0

x2 = 0

x3 = 0 x4 = 0

value
x1 = 0

value
x1 = 0

value
x2 = 0



Distributed Constraints

Distributed Constraint Optimization

Adopt

di dj p(di ,dj)

0 0 1
0 1 2
1 0 2
1 1 0

x1 = 0

x2 = 0

x3 = 0 x4 = 0

cost
1,∞

x1 = 0
cost
2,2

x1 = 0
x2 = 0

cost
1,1

x2 = 0



Distributed Constraints

Distributed Constraint Optimization

Adopt

di dj p(di ,dj)

0 0 1
0 1 2
1 0 2
1 1 0

x1 = 1

x2 = 0

x3 = 0 x4 = 0

value
x1 = 1

value
x1 = 1



Distributed Constraints

Distributed Constraint Optimization

Adopt

di dj p(di ,dj)

0 0 1
0 1 2
1 0 2
1 1 0

x1 = 1

x2 = 1

x3 = 1 x4 = 0

cost
0,∞

x1 = 1
cost
2,2

x1 = 1
x2 = 0

value
x2 = 1



Distributed Constraints

Distributed Constraint Optimization

Adopt

di dj p(di ,dj)

0 0 1
0 1 2
1 0 2
1 1 0

x1 = 1

x2 = 1

x3 = 1 x4 = 1

cost
0,3

x1 = 1
cost
0,0

x1 = 1
x2 = 1

cost
0,0

x2 = 1



Distributed Constraints

Distributed Constraint Optimization

Adopt

di dj p(di ,dj)

0 0 1
0 1 2
1 0 2
1 1 0

x1 = 1

x2 = 1

x3 = 1 x4 = 1

cost
0,0

x1 = 1



Distributed Constraints

Distributed Constraint Optimization

OptAPO

Outline



Distributed Constraints

Distributed Constraint Optimization

OptAPO

1

23

4 5



Distributed Constraints

Distributed Constraint Optimization

OptAPO

1

23

4 5



Distributed Constraints

Distributed Constraint Optimization

OptAPO

1

23

4 5



Distributed Constraints

Distributed Constraint Optimization

OptAPO

1

23

4 5

2



Distributed Constraints

Distributed Constraint Optimization

OptAPO

1

23

4 5

2



Distributed Constraints

Distributed Constraint Optimization

OptAPO

1

23

4 5

2

5



Distributed Constraints

Distributed Constraint Optimization

OptAPO

Theorem (APO worst case is centralized search)

In the worst case APO (OptAPO) will make one agent do a
completely centralized search of the complete problem space.

Proof.

By example. �



Distributed Constraints

Distributed Constraint Optimization

OptAPO

Adopt versus OptAPO

Adopt is better when communications are fast.

OptAPO is better when communications are slow.

Both have very bad worst-case but seem to perform well.


	Constraint Satisfaction
	Centralized
	Distributed
	Filtering Algorithm
	Hyper-Resolution Based Consistency Algorithm
	Asynchronous Backtracking
	Asynchronous Weak-Commitment Search
	Distributed Breakout

	Distributed Constraint Optimization
	Centralized
	Adopt
	OptAPO


