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Abstract

Algorithms for solving distributed constraint problems in
multiagent systems. Chapter 2.
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Constraint Satisfaction Problem (CSP)

Given variables x1,x2, . . .xn with domains D1,D2, . . .Dn and a set of
boolean constraints P of the form pk(xk1,xk2, . . . ,xkj)→ {0,1}, find
assignments for all the variables such that no constraints are
violated.
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Depth First Search for the CSP

---(i,g)

1 if i > n
2 then return g
3 for v ∈ Di

4 do if setting xi ← v does not violate any constraint in P given g
5 then g′← ---(i +1,g + {xi ← v})
6 if g′ , ∅
7 then return g′

8
9 return ∅
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Definition (Distributed Constraint Satisfaction Problem (DCSP))

Give each agent one of the variables in a CSP. Agents are
responsible for finding a value for their variable and can find out the
values of their neighbors’ via communication
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Filtering Algorithm

(xi ,xj)

1 old-domain← Di

2 for vi ∈ Di

3 do if there is no vj ∈ Dj consistent with vi

4 then Di ← Di −vi

5 if old-domain , Di

6 then ∀k∈{neighbors of i}k .--(i,Di)
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Hyper-Resolution Based Consistency Algorithm

Definition (k -consistency)

Given any instantiation of any k −1 variables that satisfy all
constraints it is possible to find an instantiation of any kth variable
such that all k variable values satisfy all constraints.
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Definition (Strongly k -consistent)

A problem is strongly k -consistent if it is j-consistent for all j ≤ k .
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Definition (Hyper-Resolution Rule)

A1∨A2∨ · · ·∨Am

¬(A1∧A11∧ · · ·)

¬(A2∧A21∧ · · ·)

:

¬(Am ∧Am1∧ · · ·)

¬(A11∧ · · ·∧A21∧ · · ·∧Am1∧ · · ·)
.
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Agent Variables

priority: the agent’s fixed priority number. All agents are
ordered.

local-view: current values of other agents’ variables.

current-value: current value of agent’s variable.

neighbors: initially, the set of agents with whom agent shares
a constraint.



Distributed Constraints

Constraint Satisfaction

Asynchronous Backtracking

Remote Calls

-?(j,xj) This message asks the receiver if that
assignment does not violate any of his constraints.

-(j,nogood) which means that j is reporting that it
can’t find a value for his variable because of nogood.

--(j) which requests the agent to add some
other agent j as its neighbor.
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-?(j,xj)

1 local-view ← local-view +(j,xj)
2 --()
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--()

1 if local-view and xi are not consistent
2 then if no value in Di is consistent with local-view
3 then ()
4 else select d ∈ Di consistent with local-view
5 xi ← d
6 ∀k∈neighbors k .-?(i,xi)
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-(j,nogood)

1 record nogood as a new constraint
2 for (k ,xk ) ∈ nogood where k < neighbors
3 do k .--(i)
4 neighbors← neighbors +k
5 local-view ← local-view +(k ,xk )
6 old-value← xi

7 --()
8 if old-value , xi

9 then j.-?(i,xi)
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()

1 nogoods← {V |V = inconsistent subset of local-view using hyper-resolution rule}
2 if an empty set is an element of nogoods
3 then broadcast that there is no solution
4 terminate this algorithm
5 for V ∈ nogoods
6 do select (j,xj) where j has lowest priority in V
7 j.-(i,V)
8 local-view ← local-view−(j,xj)
9 --()
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Theorem (ABT is Complete)

The ABT algorithm always finds a solution if one exists and
terminates with the appropriate message if there is no solution.

Proof.

By induction. First show that the agent with the highest priority
never enters an infinite loop. Then show that given that all the
agents with lower priority that k never fall into an infinite loop then
k will not fall into an infinite loop. �
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Asynchronous Weak-Commitment (AWC)

Use dynamic priorities.

Change ok? messages to include agent’s current priority.

Use min-conflict heuristic.
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--

1 if xi is consistent with local-view
2 then return
3 if no value in Di is consistent with local-view
4 then ()
5 else select d ∈ Di consistent with local-view

and which minimizes constraint
violations with lower priority agents.

6 xi ← d
7 ∀k∈neighbors k .-?(i,xi ,priority)
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

1 generate a nogood V
2 if V is empty nogood
3 then broadcast that there is no solution
4 terminate this algorithm
5 if V is a new nogood
6 then ∀(k ,xk )∈V k .-(i, j,priority)
7 priority ← 1+max{neighbors ’priorities}
8 select d ∈ Di consistent with local-view

and which minimizes constraint
violations with lower priority agents.

9 xi ← d
10 ∀k∈neighbors k .-?(i,xi ,priority)
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Example
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Theorem (AWC is complete)

The AWC algorithm always finds a solution if one exists and
terminates with the appropriate message if there is no solution.

Proof.

The priority values are changed if and only if a new nogood is
found. Since the number of possible nogoods is finite the priority
values cannot be changed indefinitely. When the priority values are
stable AWC becomes ABT, which is complete. �
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Definition (Quasi-local-minimum)

An agent xi is in a quasi-local-minimum if it is violating some
constraint and neither it nor any of its neighbors can make a
change that results in lower cost for all.
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Remote Procedure Calls

-?(i,xi) where i is the agent and xi is its current value,

-(i, improve,eval) where improve is the maximum
i could gain by changing to some other color and eval is its
current cost.
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-?(j,xj)

1 received-ok [j]← 
2 agent-view ← agent-view +(j,xj)
3 if ∀k∈neighbors received-ok [k ] = 
4 then -()
5 ∀k∈neighbors received-ok [k ]← 
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-()

1 cost ← evaluation of xi given current weights and values.
2 my-improve ← possible maximal improvement
3 new-value ← value that gives maximal improvement
4 ∀k∈neighbors k .-(i,my-improve,cost)
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-(j, improve,eval)

1 received-improve[j]← improve
2 if ∀k∈neighbors received-improve[k ] , 
3 then -
4 agent-view ← ∅
5 ∀k∈neighbors received-improve[k ]← 
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-()

1 if ∀k∈neighbors my-improve ≥ received-improve[k ]
2 then xi ← new-value
3 if cost > 0∧∀k∈neighbors received-improve[k ] ≤ 0 B quasi-local opt.
4 then increase weight of constraint violations
5 ∀k∈neighbors k .-?(i,xi)
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Theorem (Distributed Breakout is not Complete)

Distributed breakout can get stuck in local optima. Therefore, there
are cases where a solution exists and it cannot find it.

Proof.

By example. �

In practice, its really good.
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Centralized

Definition (Constraint Optimization Problem (COP))

Given variables x1,x2, . . .xn with domains D1,D2, . . .Dn and a set of
constraints P of the form pk(xk1,xk2, . . . ,xkj)→<, find
assignments for all the variables such that the sum of the
constraint values is minimized.
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Centralized

---()

1 c∗ ←∞ B Minimum cost found. Global variable.
2 g∗ ← ∅ B Best solution found. Global variable.
3 ----(1,∅)
4 return g∗

----(i,g)

1 if i = n
2 then if P(g) < c∗

3 then g∗← g
4 c∗← P(g)
5 return
6 for v ∈ Di

7 do g′← g + {xi ← v}
8 if P(g) < c∗

9 then ----(i +1,g′)
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Definition (Distributed Constraint Optimization Problem (DCOP))

Give each agent one of the variables in a COP. Agents are
responsible for finding a value for their variable and can find out the
values of their neighbors’ via communication
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Adopt

Remote Procedure Calls

threshold tell children how much cost they can incur, ignore
anything that costs more than that.

value tell descendants what value agent sets itself to.

cost tell parent lower and upper bounds of cost given the
current value assignments of ancestors.
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Theorem (APO worst case is centralized search)

In the worst case APO (OptAPO) will make one agent do a
completely centralized search of the complete problem space.

Proof.

By example. �
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Adopt versus OptAPO

Adopt is better when communications are fast.

OptAPO is better when communications are slow.

Both have very bad worst-case but seem to perform well.


	Constraint Satisfaction
	Centralized
	Distributed
	Filtering Algorithm
	Hyper-Resolution Based Consistency Algorithm
	Asynchronous Backtracking
	Asynchronous Weak-Commitment Search
	Distributed Breakout

	Distributed Constraint Optimization
	Centralized
	Adopt
	OptAPO


