José M Vidal

Department of Computer Science and Engineering, University of South Carolina

January 15, 2010

Abstract

Algorithms for solving distributed constraint problems in multiagent systems. Chapter 2.

Graph Coloring

Graph Coloring

Constraint Satisfaction Problem (CSP)

Given variables $x_1, x_2, ..., x_n$ with domains $D_1, D_2, ..., D_n$ and a set of boolean constraints *P* of the form $pk(x_{k1}, x_{k2}, ..., x_{kj}) \rightarrow \{0, 1\}$, find assignments for all the variables such that no constraints are violated.

Depth First Search for the CSP

```
DEPTH-FIRST-SEARCH-CSP(i,g)
```

```
1 if i > n
```

```
2 then return g
```

```
3 for v \in D_i
```

```
4 do if setting x_i \leftarrow v does not violate any constraint in P given g
5 then g' \leftarrow \text{DEPTH-FIRST-SEARCH-CSP}(i+1, g+\{x_i \leftarrow v\})
```

```
if g' \neq \emptyset
```

```
then return g'
```

7 8

6

9 return Ø

Distributed Constraints Constraint Satisfaction Distributed

Definition (Distributed Constraint Satisfaction Problem (DCSP))

Give each agent one of the variables in a CSP. Agents are responsible for finding a value for their variable and can find out the values of their neighbors' via communication Distributed Constraints Constraint Satisfaction Filtering Algorithm

Outline

 $\text{REVISE}(x_i, x_j)$

- 1 old-domain $\leftarrow D_i$
- 2 for $v_i \in D_i$
- 3 **do if** there is no $v_j \in D_j$ consistent with v_i
- 4 then $D_i \leftarrow D_i v_i$
- 5 **if** old-domain $\neq D_i$
- 6 **then** $\forall_{k \in \{\text{neighbors of } i\}} k$.HANDLE-NEW-DOMAIN (i, D_i)

Distributed Constraints Constraint Satisfaction Filtering Algorithm

Distributed Constraints Constraint Satisfaction

Distributed Constraints Constraint Satisfaction

Distributed Constraints Constraint Satisfaction

Distributed Constraints Constraint Satisfaction

Distributed Constraints Constraint Satisfaction

Distributed Constraints
Constraint Satisfaction
Filtering Algorithm

Distributed Constraints
Constraint Satisfaction
Filtering Algorithm

Filtering fails to detect no-solution.

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Outline

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Definition (*k*-consistency)

Given any instantiation of any k - 1 variables that satisfy all constraints it is possible to find an instantiation of any k^{th} variable such that all k variable values satisfy all constraints.

Distributed Constraints Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Definition (Strongly *k*-consistent)

A problem is strongly *k*-consistent if it is *j*-consistent for all $j \le k$.

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Definition (Hyper-Resolution Rule)

$$A_1 \lor A_2 \lor \cdots \lor A_m$$

$$\neg (A_1 \land A_{11} \land \cdots)$$

$$\neg (A_2 \land A_{21} \land \cdots)$$

$$\vdots$$

$$\neg (A_m \land A_{m1} \land \cdots)$$

$$\neg (A_{11} \land \cdots \land A_{21} \land \cdots \land A_{m1} \land \cdots)$$

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

X1

 $x_1 = \bullet \lor x_1 = \bullet$ $\neg (x_1 = \bullet \land x_2 = \bullet)$ $\neg (x_1 = \bullet \land x_3 = \bullet)$ $\neg (x_2 = \bullet \land x_3 = \bullet)$

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

Sends
$$\neg(x_2 = \bullet \land x_3 = \bullet)$$
 to x_2 and x_3 .

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

$$x_2 = \bullet \lor x_2 = \bullet$$
$$\neg (x_2 = \bullet \land x_3 = \bullet)$$
$$\neg (x_2 = \bullet \land x_3 = \bullet)$$
$$\neg (x_2 = \bullet \land x_3 = \bullet)$$
$$\neg (x_3 = \bullet)$$

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

$$x_1 = \bullet \lor x_1 = \bullet$$

$$\neg (x_1 = \bullet \land x_2 = \bullet)$$

$$\neg (x_1 = \bullet \land x_3 = \bullet)$$

$$\neg (x_2 = \bullet \land x_3 = \bullet)$$

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

X1

Sends $\neg(x_2 = \bullet \land x_3 = \bullet)$ to x_2 and x_3 .

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

$$x_2 = \bullet \lor x_2 = \bullet$$
$$\neg (x_2 = \bullet \land x_3 = \bullet)$$
$$\neg (x_2 = \bullet \land x_3 = \bullet)$$
$$\neg (x_2 = \bullet \land x_3 = \bullet)$$
$$\neg (x_3 = \bullet)$$

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

X₂

Sends $\neg(x_3 = \bullet)$ and $\neg(x_3 = \bullet)$ to x_3 .

Constraint Satisfaction

Hyper-Resolution Based Consistency Algorithm

X3

 $x_3 = \bullet \lor x_3 = \bullet$ $\neg (x_3 = \bullet)$ $\frac{\neg (x_3 = \bullet)}{\text{Contradiction}}$

Outline

- *priority*: the agent's fixed priority number. All agents are ordered.
- local-view: current values of other agents' variables.
- current-value: current value of agent's variable.
- *neighbors*: initially, the set of agents with whom agent shares a constraint.

Remote Calls

- HANDLE-OK?(j, x_j) This message asks the receiver if that assignment does not violate any of his constraints.
- HANDLE-NOGOOD(*j*, *nogood*) which means that *j* is reporting that it can't find a value for his variable because of *nogood*.
- HANDLE-ADD-NEIGHBOR(*j*) which requests the agent to add some other agent *j* as its neighbor.

handle-ok? (j, x_j)

- 1 local-view \leftarrow local-view $+(j, x_i)$
- 2 CHECK-LOCAL-VIEW()

5 6

CHECK-LOCAL-VIEW()

- 1 **if** *local-view* and *x_i* are not consistent
- 2 then if no value in D_i is consistent with local-view
- 3 then backtrack()
- 4 **else** select $d \in D_i$ consistent with *local-view*

$$x_i \leftarrow d$$

 $\forall_{k \in neighbors} k.$ HANDLE-OK? (i, x_i)

4

5

HANDLE-NOGOOD(j, nogood)

- 1 record nogood as a new constraint
- 2 for $(k, x_k) \in nogood$ where $k \notin neighbors$
- 3 **do** *k*.handle-add-neighbor(*i*)
 - $neighbors \leftarrow neighbors + k$

```
local-view \leftarrow local-view + (k, x_k)
```

- 6 old-value $\leftarrow x_i$
- 7 CHECK-LOCAL-VIEW()
- 8 **if** old-value $\neq x_i$
- 9 **then** *j*.handle-ok? (i, x_i)

backtrack()

7

- 1 $nogoods \leftarrow \{V | V = \text{ inconsistent subset of } local-view using hyper-res$
- 2 if an empty set is an element of nogoods
- 3 then broadcast that there is no solution
- 4 terminate this algorithm
- 5 for $V \in nogoods$
- 6 **do** select (j, x_j) where *j* has lowest priority in *V*
 - j.handle-nogood(i, V)
- 8 local-view \leftarrow local-view $-(j, x_j)$
- 9 CHECK-LOCAL-VIEW()

Asynchronous Backtracking

Theorem (ABT is Complete)

The ABT algorithm always finds a solution if one exists and terminates with the appropriate message if there is no solution.

Proof.

By induction. First show that the agent with the highest priority never enters an infinite loop. Then show that given that all the agents with lower priority that k never fall into an infinite loop then k will not fall into an infinite loop.

Distributed Constraints

Constraint Satisfaction Asynchronous Weak-Commitment Search

Outline

Asynchronous Weak-Commitment (AWC)

- Use dynamic priorities.
- Change ok? messages to include agent's current priority.
- Use min-conflict heuristic.

CHECK-LOCAL-VIEW

- 1 if x_i is consistent with *local-view*
- 2 then return
- 3 if no value in D_i is consistent with *local-view*
- 4 **then** васктваск()
- 5 **else** select $d \in D_i$ consistent with *local-view*

and which minimizes constraint violations with lower priority agents.

- $\begin{array}{ccc} 6 & x_i \leftarrow d \\ 7 & \forall k \in \mathsf{point} \end{array}$
 - $\forall_{k \in neighbors} k.$ Handle-ok? $(i, x_i, priority)$

BACKTRACK

- 1 generate a nogood V
- 2 if V is empty nogood
- 3 then broadcast that there is no solution
- 4 terminate this algorithm
- 5 if V is a new nogood
- 6 then $\forall_{(k,x_k) \in V} k$.handle-nogood(i, j, priority)7
 - priority $\leftarrow 1 + \max\{neighbors' \text{priorities}\}$
- 8 select $d \in D_i$ consistent with *local-view* and which minimizes constraint
 - violations with lower priority agents.

9
$$x_i \leftarrow d$$

10 $\forall_{k \in neighbors} k.$ Handle-ok? $(i, x_i, priority)$

Constraint Satisfaction

Asynchronous Weak-Commitment Search

Theorem (AWC is complete)

The AWC algorithm always finds a solution if one exists and terminates with the appropriate message if there is no solution.

Proof.

The priority values are changed if and only if a new nogood is found. Since the number of possible nogoods is finite the priority values cannot be changed indefinitely. When the priority values are stable AWC becomes ABT, which is complete.

Hill Climbing

Hill Climbing

Hill Climbing

Definition (Quasi-local-minimum)

An agent x_i is in a quasi-local-minimum if it is violating some constraint and neither it nor any of its neighbors can make a change that results in lower cost for all.

Remote Procedure Calls

- HANDLE-OK? (i, x_i) where *i* is the agent and x_i is its current value,
- HANDLE-IMPROVE(*i*, *improve*, *eval*) where *improve* is the maximum *i* could gain by changing to some other color and *eval* is its current cost.

handle-ok? (j, x_j)

- 1 received-ok[j] \leftarrow TRUE
- 2 agent-view \leftarrow agent-view $+(j, x_j)$
- 3 if $\forall_{k \in neighbors}$ received-ok[k] = true
- 4 **then** send-improve()
- 5 $\forall_{k \in neighbors} received ok[k] \leftarrow FALSE$

SEND-IMPROVE()

- 1 *cost* \leftarrow evaluation of x_i given current weights and values.
- 2 my-improve ← possible maximal improvement
- 3 *new-value* \leftarrow value that gives maximal improvement
- 4 $\forall_{k \in neighbors} k$.Handle-IMPROVE(i, my-improve, cost)

5

HANDLE-IMPROVE(*j*, *improve*, *eval*)

- 1 received-improve[j] \leftarrow improve
- 2 if $\forall_{k \in neighbors}$ received-improve $[k] \neq \text{NONE}$
- 3 then send-ok
- 4 agent-view $\leftarrow \emptyset$
 - $\forall_{k \in neighbors} \text{ received-improve}[k] \leftarrow NONE$

send-ok()

- 1 if $\forall_{k \in neighbors} my$ -improve \geq received-improve[k]
- 2 **then** $x_i \leftarrow new-value$
- 3 if $cost > 0 \land \forall_{k \in neighbors}$ received-improve $[k] \le 0 \triangleright$ quasi-local opt.
- 4 then increase weight of constraint violations
- 5 $\forall_{k \in neighbors} k$.Handle-ok? (i, x_i)

Theorem (Distributed Breakout is not Complete)

Distributed breakout can get stuck in local optima. Therefore, there are cases where a solution exists and it cannot find it.

Proof.	
By example.	

Theorem (Distributed Breakout is not Complete)

Distributed breakout can get stuck in local optima. Therefore, there are cases where a solution exists and it cannot find it.

Proof.	
By example.	

In practice, its really good.

Distributed Constraints Distributed Constraint Optimization Centralized

Definition (Constraint Optimization Problem (COP))

Given variables $x_1, x_2, ..., x_n$ with domains $D_1, D_2, ..., D_n$ and a set of constraints *P* of the form $pk(x_{k1}, x_{k2}, ..., x_{kj}) \rightarrow \Re$, find assignments for all the variables such that the sum of the constraint values is minimized.

```
Distributed Constraints
Distributed Constraint Optimization
Centralized
```

```
BRANCH-AND-BOUND-COP()
```

- 1 $c \ast \leftarrow \infty$ \triangleright Minimum cost found. Global variable.
- 2 $g_* \leftarrow \emptyset$ > Best solution found. Global variable.
- 3 BRANCH-AND-BOUND-COP-HELPER $(1, \emptyset)$

4 return g^*

```
BRANCH-AND-BOUND-COP-HELPER(i, g)
1
    if i = n
2
        then if P(g) < c^*
3
                 then g^* \leftarrow g
                        c^* \leftarrow P(g)
4
5
               return
6
    for v \in D_i
7
          do q' \leftarrow q + \{x_i \leftarrow v\}
8
              if P(g) < c^*
9
                 then BRANCH-AND-BOUND-COP-HELPER(i+1, q')
```

Definition (Distributed Constraint Optimization Problem (DCOP))

Give each agent one of the variables in a COP. Agents are responsible for finding a value for their variable and can find out the values of their neighbors' via communication Distributed Constraints Distributed Constraint Optimization Adopt

Outline

Distributed Constraints Distributed Constraint Optimization Adopt

Remote Procedure Calls

- **threshold** tell children how much cost they can incur, ignore anything that costs more than that.
- value tell descendants what value agent sets itself to.
- **cost** tell parent lower and upper bounds of cost given the current value assignments of ancestors.

di	dj	$p(d_i, d_j)$
0	0	1
0	1	2
1	0	2
1	1	0

di	dj	$p(d_i, d_j)$
0	0	1
0	1	2
1	0	2
1	1	0

di	dj	$p(d_i, d_j)$
0	0	1
0	1	2
1	0	2
1	1	0

di	dj	$p(d_i, d_j)$
0	0	1
0	1	2
1	0	2
1	1	0

di	dj	$p(d_i, d_j)$
0	0	1
0	1	2
1	0	2
1	1	0

di	dj	$p(d_i, d_j)$	
0	0	1	
0	1	2	
1	0	2	
1	1	0	

Distributed Constraints Distributed Constraint Optimization OptAPO

Outline

Theorem (APO worst case is centralized search)

In the worst case APO (OptAPO) will make one agent do a completely centralized search of the complete problem space.

Proof. By example.

Distributed Constraints Distributed Constraint Optimization OptAPO

Adopt versus OptAPO

- Adopt is better when communications are fast.
- OptAPO is better when communications are slow.
- Both have very bad worst-case but seem to perform well.