Distributed Constraint Optimization

Michal Jakob

Agent Technology Center, Dept. of Cybernetics, FEE Czech Technical University

A4M33MAS Autumn 2010 - Lect. 12

(based partially on slides by Jay Modi)

Dynamic Traffic Light Scheduling

 Minimize traffic delay in a road grid by synchronizing lights

green wave
| N ‘ ‘ | Distance (m.) ‘x
‘ | A

traffic light agent
« can communicate locally
« can adopt four synchronization strategies (NS,SN,WE, EW)

Constraint Optimization Problem
(COP)

* Problem specification:
— X = {x;, ..., X, } set of variables
— D ={D;, ..., D,,,} set of domains for the variables, i.e. x; € D;; if
D;is finite, let D; = {Vi,p ...,vi,d(i)}
— C ={cq, ..., C} } set of constraints over X; the constraint ¢; is
represented by a real-valued function P;(yy, ..., y;) = R,
{yl, ...,yj} C X that determines the degree of constraint
violation (constraint value) for a given assignment
* Solution:

— find an assignment of variables {x;, ..., x,,; } such that the sum of
all constraint values is minimized

e

Example

Constraint Graph

didj [f(di.dj) @

2
‘ ;; ; L1 Fa) =4 Y o F(A) =0 1| F(A)=7
© ool (x2)
0 AN RN /N

/ \ 00

: QO ® ®

e

Distributed Constraint Optimization

Problem (DCOP)

« A=1{A, .., A,}setof agents

* Each agent A; is responsible for one variable x;
— extension to multiple variables per agent possible

 Agent can communicate by sending messages

 Example

(D)COP with Binary Non-Negative
Constraints

* Constraints involve two variables at maximum: P(xl-, xj)

* Constraint values are not negative: P(xl-, xj) >0

 => addition of constraints cannot decrease the overall sum

Solution Algorithms

 Requirements on a good algorithm:
— terminates in a finite number of steps
— is complete: finds an optimum solution (always exists)
— (is sound: the solution returned is indeed optimum)
* Existing algorithms
— Asynchronous Distributed Optimization (ADOPT)
— Optimal Asynchronous Partial Overlay (OptAPO)
— Dynamic Parameter Optimization Problem (DPOP)

* Trade-offs between running time (number of cycles), number
of messages and size of messages

* Recently, incomplete local search algorithms also proposed

Centralized Branch-and-Bound
Algorithm

BRANCH-AND-BOUND-COP()

1 cx« oo > Minimum cost found. Global variable.
2 g=<«(> Bestsolution found. Global variable.
3 BRANCH-AND-BOUND-COP-HELPER(1, ()

4 return g*

BRANCH-AND-BOUND-COP-HELPER(/, g)

1 ifi=n

2 then if P(g) < c*

3 then g* « g

4 c* — P(9)
5 return

6 forveD;

7 do g « g+ {xj « v}
8 if P(g) <c®

9

then BHANGH—AND—BOUND—COP-HELPEH(f+ 1,g’) %

Desiderata for DCOP

Why is distributed important?
Autonomy
Communication cost
Robustness (central point of failure)
Privacy

Why is asynchrony important?
Parallelism
Robust to communication delays
No global clock

Why are theoretical guarantees important?
Optimal solutions feasible for special classes
Bound on worst-case performance

US UNIVERSITY OF
SOUTHERN CALIFORNIA

loosely connected
communities

USC UNIVERSITY OF
SOUTHERN CALIFORNIA

State of the Artin DCOP (~2004)

Why have previous distributed methods failed to provide
asynchrony + optimality?

Branch and Bound
— Backtrack condition - when cost exceeds upper bound
— Problem — sequential, synchronous

Asynchronous Backtracking
— Backtrack condition - when constraint is unsatisfiable
— Problem - only hard constraints allowed

Previous approaches backtrack when sub-
optimality is proven

USC UNIVERSITY OF
SOUTHERN CALIFORNIA

Adopt: Asynchrenous Distributed Optimiz

-- Weak backtracking
Adopt’s backtrack condition — when lower bound gets too high

Why lower bounds?
allows asynchrony
allows soft constraints
allows quality guarantees

Any downside?
backtrack sub-optimality is proven

solutions need revisiting
— -- Efficient reconstruction of abandoned solutions

(RTE bt
Adept Algenthm
L L

Agents are ordered in a tree | 1

— constraints between @ @
AN \

ancestors/descendents

/ /
— no constraints between siblings @ @ @ @

Constraint Graph Tree Ordering

Basic Algorithm: ?

— choose value with min cost :

— Loop until termination-condition true: @
When receive message: LN

— choose value with min cost e AN
.7 S

— send VALUE message to @ @

descendents
— send COST message to parent VALUE messages
— send THRESHOLD message to child — — COST messages

THRESH messages

SR
agents@USC

\Weak Backiracking

Suppose parent has two values, “white” and “black™

Explore “white” first Receive cost msq Now explore “black”

parent . LB(W) =0 parent . LB(W) — parent LB(W) _9
LB(b) =0

Receive cost msq Go back to “white” Termination Condition True

parent LB(W) =) parent . LB(W) =92 parent .
LB(b) = LB(b) =3 LB(w)=10 =UB(W
B(b)=12

Example

[

@C

concurrently choose,
send to descendents

)LB =i
LB =]

@6

report lower bounds

Constraint Graph

@ didi Jfdidi
| ool
ool 2
Q 0|
/ _eel o

US UNIVERSITY OF
SOUTHERN CALIFORNIA

Tl
/] LB=0
2T\

/
© 0 O
x2, x3 switch value,

x1 switches value
report new lower bounds
Note: x3’s cost message to x2
IS obsolete since x1 has changed
value, msg will be disregarded

Ox
l’_BO

\LBO
Q_/Bo

X2, x3 report new lower bounds

/
c @

optimal solution

Revisiting Abandened Selutiens

— reconstructing from scratch is inefficient
— remembering solutions is expensive

— backtrack thresholds — polynomial space
— control backtracking to efficiently re-search

Parent informs child of lower bound:

Explore “white” first Now explore “black”

parent

® LB(w)=10 parent | B(w) =10
LB(b) =0 LB(b) = 11

USC UNIVERSITY OF
SOUTHERN CALIFORNIA

Return to “white”

arent
PalElit g

SR
agents@USC

Backtrack lhresholds

Suppose agent i received threshold = 10 from its parent

Explore “white” first Receive cost msq Stick with “white”
et @ LBw) =0 29Ntig | B(w) = ® LB(w)=2
LB(b) =0 LB(b) =0 LB(b) =0

threshold = 10 threshold = 10

threshold = 10

Receive more cost msqgs Now try black

@ LB(w) = LB(w) =11
LB(b) =0 LB(b) =0
threshold = 10 threshold = 10

Qlds with multiple

O

U UNIVERSITY OF
SOUTHERN CALIFORNIA

en’rs@USC

ADOPT (1)

RESET-VARIABLES(d, ¢)

1 lower-bound[d, c] — 0
2 tld,c]—0

3 upper-bound[d, ¢] < oo
4 context[d, c] — {}

INITIALIZE()

threshold — 0

received-terminate «— FALSE

current-context — {}

VdeD, ce children RESET-VARIABLES(d, ¢)

x; — d € D; which minimizes: my cost plus 3
BACKTRACK()

[Ty G SN TL Y

ce children

lower-bound|[d, c|

18

ADOPT(2)

HANDLE-VALUE(], 2;)
1 if = received-terminate

2 then current-context[j] — z;

3 for d € D;, c € children such that context|d, c] is
incompatible with current-context

4 do RESET-VARIABLES(d, ¢)

5 MAINTAIN-THRESHOLD-INVARIANT()

6 BACKTRACK()

HANDLE-COST(k, context, [b, ub)

1 d— context[i]

2 delete contert[i]

3 if - received-terminate

4 then for (j,z;) € contert and j is not my neighbor

5 do current-contert[j] — z;
6 for d' € D;, ¢ € children such that context[d,c] is
incompatible with current-context
7 do RESET-VARIABLES(d', ¢)
8 if contert compatible with current-context
9 then lower-bound[d, k] — Ib
10 upper-bound|d, k] — ub
11 context[d, k] — context
12 MAINTAIN-CHILD-THRESHOLD-INVARIANT()
13 MAINTAIN-THRESHOLD-INVARIANT()
14 BACKTRACK()

19

ADOPT (3)

BACKTRACK()

1

=1 T O = D D

10
11

if threshold = mingep, cost(d) + 3 pitdren UPPET-bound[d, c|
then z; « arg minge p, cost(d) + >° . ji1dren UPPEr-boundld, c|
elseif threshold < cost(x;) +) . pidren lOWer-bound[z;, c]
then r; < arg minge p, cost(d) + 3~ . pirdren lower-bound[d, c]
]?ka neighbors Ak has lower priorit}-'k-H*%NDLE’VALL-E{is Ti}
MAINTAIN-ALLOCATION-INVARIANT()
if threshold = mingep, cost(d) + 3 - pitdren UPPET-bound[d, ¢ and
(received-terminate or 1 am root)
then current-context[i] — x;
¥ eechildrenC-HANDLE-TERMINATE(current-context)
exit
parent HANDLE-COST(current-context,
mingep, cost(d) + 3~ - pitiren lOwer-bound[d, c|,
minge p, cost(d) + 3 . pitdren UPPET-bound[d, c])

20

ADOPT (4)

MAINTAIN-THRESHOLD-INVARIANT ()

1 if threshold < mingep, cost(d) + 3 pidren
2 then threshold — mingep, cost(d) + %
3 if threshold > mingep, cost(d) + 3" . itdren
4 then threshold «— mingep, cost(d) + 3

lower-bound|d, c]
e children lOWer-bound[d, c]
upper-bound|d,]
€ children UWPPET- bound [d‘ E]

MAINTAIN-ALLOCATION-INVARIAN T{)

1 while threshold > cost(x;) + > .. hildren t1Ti: €]

2 do chosen «— ¢’ € children such that upper-bound[z;, ¢'] > t[z;,]
3 t[z;, chosen| «— t[x;, chosen] + 1

4 while threshold < cost(z;) + > .c chitdren L1 Zi: €]

5 do chosen < ¢’ € children such that lower-bound|z;, '] < t[z;, ']
6 t[z;, chosen] — t[z;, chosen] — 1

7

Ve children C:-HANDLE-THRESHOLD(t[x;, chosen], current-context)

I'»'IAINTAIN—CHILD—THRESHDLD—[N*’ARIANT{}

1 for d e D, e e children

2 do if lower-bound[d, c| > t[d,]

3 then t[d, ¢] — lower-bound[d, c]
4 for de D;, c e children

5 do if upper-boundl[d,] < t[d,]

6 then t[d, ¢] — upper-bound[d, c]

21

ADOPT (5)

HANDLE-THRESHOLD(t, context)

1 if context is compatible with current-contert
2 then threshold — t
3 MAINTAIN-THRESHOLD-INVARIANT()
4 BACKTRACK()

HANDLE-TERMINATE(context)

1 received-terminate «— TRUE
2 current-contert — context
3 BACKTRACK()

22

LSL UNIVERSITY OF
SOUTHERN CALIFORNIA

Evaluation off Speedups

GraphColor, Link Density 2 GraphColor, Link Density 3

SynchBB —+—
SynchiD ——
Adopt —%—

15 20 25 30 35 40 a8 10 12 14 16 18 20 22 24 26
Num Agents Num Agents

* Adopt’s lower bound search method and parallelism yields
significant efficiency gains

» Sparse graphs (density 2) solved optimally, efficiently by Adopt.

TQ{ UNIVERSITY OF
LSL SOUTHERN CALIFORNIA

NUMBEK off Messages

GraphColor

K density 3

5 10 15 20 25 30 35 40
Num Agents

- Communication grows linearly
* only local communication (no broadcast)

USC UNIVERSITY OF
SOUTHERN CALIFORNIA

Bounded enrer appreximation

Quality control for approximate solutions
User provides error bound b
Find any solution S where

cost(S) < cost(optimal soln) + b

. Adopt’s lower-
bound based search method
naturally leads to bounded error
approximation!

root

LS UNIVERSITY OF
SOUTHERN CALIFORNIA

Evaluation o Bounded: Error

GraphColor, Link Density 3 GraphColor, Link Density 3
(18 agents)

Percent of Examples

Num Agents Distance from Optimal Solution

e Time-to-solution decreases as b iIs increased.

* Plus: Guaranteed worst-case performance!

Optimality of Adopt

* For finite DCOPs with binary non-negative constraints, Adopt
is guaranteed to terminate with the globally optimal solution

27

Adopt summary — Key Ideas

e Optimal, asynchronous algorithm for DCOP
— polynomial space at each agent
 Weak Backtracking
— lower bound based search method
— Parallel search in independent subtree
* Efficient reconstruction of abandoned solutions
— backtrack thresholds to control backtracking
 Bounded error approximation
— sub-optimal solutions faster
— bound on worst-case performance

Traffic Light Control DCOP
Formulation

Pi,j density of vehicle inthe lane i — j
_ Pij . . . i i)
Bij = ’/Zk o, [raction of traffic at intersection j coming from |

Yij 1.5 (if i and j synchronized), 2 otherwise
7,7 €{0,1,1.5,2} degree of alignment of synchronization with traffic

Plan run by agent ¢

Plan run by agent j

T

1§2§3§

1
1.5

-
s

ss
g &8

+ synchronized in direction of max traffic
- synchronized in other directions

Constraint cost

fij=BijTijVij

from: R. Junges and A. L. C. Bazzan. Evaluating the performance of DCOP algorithms in a real

world, dynamic problem. In AAMAS 2008, pages 599-606, 2008

29

Results - Complexity

10000 T— : : —
1000 -
] ., o
| e _‘
100 - s -
E:-ﬁ N T
by 10 - P e I
=] ><
1o,]
1Ny A
X
0.1 7 &~ ADOPT ---@-- [
' OptAPO 3¢
- DPOP ik
D.D‘1 T T T T
9 25 49 81
Number of Agents
Alg. Nb. of Msgs Msgs s1ze Total
(bytes) (MB)
ADOPT | 3589624 + 1690.4 12540 £20.79 43958
OptAPO | 4015.66 £+ 68.70 9345+ 8.15 366
DPOP 322 69286.78 = 721.12 | 21787

30

Results - Quality

| Net. | Experiment | Stopped Veh. | Density |
Case 1 1021 =228 | 0.29 = 0.06
Case 2 6721+137 | 023 003
3x3 Case 3 (ADOPT) 1.88 £ 0.53 0.11 £0.02
Case 3 (OptApo) 197 +0.60 0.11 +0.01
Case 3 (DPOP) 2424046 | 013002
Case 1 0224+236 | 028004
Case 2 695+182 (023003
5x5 Case 3 (ADOPT) 178+ 080 | 011001
Case 3 (OptApo) 190 +059 (012001
Case 3 (DPOP) 308+040 (014002
Case 1 8§91 229 | 0.27x=0.04
Case 2 582 +131 0.21 £0.02
X7 Case 3 (ADOPT) 197050 | 0.12+0.01
Case 3 (OptApo) 191 +049 | 012001
Case 3 (DPOP) 290062 | 0.14 x=0.01
Case 1 805217 | 014 L001
Case 2 535+097 | 010001
9x9 Case 3 (ADOPT) | 204 £0.77 | 0.12 4+ 0.01
Case 3 (OptAPO) 198 +085 | 0.11 =001
Case 3 (DPOP) 2.88 +0.72 0.13 002

Case 1 = worst case

Case 2 = static optimum
Case 3 = dynamic optimization

Avg. Density - 49 agents

0.3 ' :

Avg. Density Scenaric 1
Avg. Density Scenario 2

Density Scenario 3 (ADOPT)

0.25 - Avg.

0.2 - i
0.15
0.1

0.05

5000 10000 15000 20000 25000 30000 35000
Steps

fes

31

Conclusion

* Distributed constraint optimization is a general widely applicable
model

e Optimal (complete) asynchronous algorithms exist for DCOPs with
binary, non-negative constraints
— ADOPT, OptAPO, DPOP
— Different computation and communication complexity profiles

* ADOPT
— optimal, asynchronous algorithm for DCOP

— polynomial space at each agent
 Reading:
— [Vidal] — Chapter 2

— P.J. Modi et al. ADOPT: Asynchronous Distributed Constraint
Optimization with Quality Guarantees. Artificial Intelligence Journal,
161(1-2):149-180, January 2005.

