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Dynamic Traffic Light Scheduling 

• Minimize traffic delay in a road grid by synchronizing lights 

traffic light agent 

• can communicate locally 

• can adopt four synchronization strategies (NS,SN,WE, EW) 

green wave 



Constraint Optimization Problem 
(COP) 
• Problem specification: 

– 𝑋 = {𝑥𝑖 , … , 𝑥𝑚} set of variables 

– 𝐷 = {𝐷𝑖 , … , 𝐷𝑚} set of domains for the variables, i.e. 𝑥𝑖 ∈ 𝐷𝑖; if 

𝐷𝑖is finite, let 𝐷𝑖 = 𝑣𝑖,1, … , 𝑣𝑖,𝑑 𝑖  

– 𝐶 = {𝑐1, … , 𝑐𝑘} set of constraints over 𝑋; the constraint 𝑐𝑖 is 

represented by a real-valued function 𝑃𝑖 𝑦1, … , 𝑦𝑗 → 𝑹,

 𝑦1, … , 𝑦𝑗 ⊆ 𝑋 that determines the degree of constraint 

violation (constraint value) for a given assignment 

• Solution: 

– find an assignment of variables {𝑥𝑖 , … , 𝑥𝑚} such that the sum of 
all constraint values is minimized 
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Distributed Constraint Optimization 
Problem (DCOP) 
• 𝐴 = {𝐴1, … , 𝐴𝑛} set of agents 

• Each agent 𝐴𝑖 is responsible for one variable 𝑥𝑖  

– extension to multiple variables per agent possible 

• Agent can communicate by sending messages 

• Example 
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(D)COP with Binary Non-Negative 
Constraints 

• Constraints involve two variables at maximum: 𝑃 𝑥𝑖 , 𝑥𝑗  

• Constraint values are not negative: 𝑃 𝑥𝑖 , 𝑥𝑗 ≥ 0 

• => addition of constraints cannot decrease the overall sum 
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Solution Algorithms 

• Requirements on a good algorithm: 

– terminates in a finite number of steps 

– is complete: finds an optimum solution (always exists) 

– (is sound: the solution returned is indeed optimum) 

• Existing algorithms 

– Asynchronous Distributed Optimization (ADOPT)  

– Optimal Asynchronous Partial Overlay (OptAPO)  

– Dynamic Parameter Optimization Problem (DPOP) 

• Trade-offs between running time (number of cycles), number 
of messages and size of messages 

• Recently, incomplete local search algorithms also proposed 
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Centralized Branch-and-Bound 
Algorithm 
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Desiderata for DCOP 

Why is distributed important? 

 Autonomy 

 Communication cost 

 Robustness (central point of failure) 

 Privacy 

 

Why is asynchrony important?  

 Parallelism 

 Robust to communication delays 

 No global clock 

 

Why are theoretical guarantees important? 

 Optimal solutions feasible for special classes 

 Bound on worst-case performance 

loosely connected 

communities 
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State of the Art in DCOP (~2004) 

Why have previous distributed methods failed to provide  

asynchrony + optimality?  

 

 Branch and Bound 
– Backtrack condition - when cost exceeds upper bound 

– Problem – sequential, synchronous 

 Asynchronous Backtracking 
– Backtrack condition - when constraint is unsatisfiable 

– Problem - only hard constraints allowed 

 

 Observation  Previous approaches backtrack only when sub-
optimality is proven  



11 

Adopt: Asynchronous Distributed Optimization 

First key idea -- Weak backtracking  

 Adopt’s backtrack condition – when lower bound gets too high 
 

Why lower bounds?  

 allows asynchrony 

 allows soft constraints 

 allows quality guarantees 

 

Any downside? 

 backtrack before sub-optimality is proven 

 solutions need revisiting 
– Second key idea -- Efficient reconstruction of abandoned solutions 
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 Agents are ordered in a tree 
– constraints between 

ancestors/descendents 

– no constraints between siblings 

 

 

 Basic Algorithm: 
– choose value with min cost 
– Loop until termination-condition true: 

 When receive message:  

– choose value with min cost  

– send VALUE message to 
descendents  

– send COST message to parent 

– send THRESHOLD message to child 

 

Adopt Algorithm 

Constraint Graph 
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Weak Backtracking 

 Suppose parent has two values, “white” and “black” 

parent 

Explore “white” first 

LB(w) = 0 

LB(b) = 0 

parent 

Receive cost msg 

LB(w) = 2 

LB(b) = 0 

parent 

 Now explore “black” 

LB(w) = 2 

LB(b) = 0 

 

 

parent 

Receive cost msg 

LB(w) = 2 

LB(b) = 3 

parent 

Go back to “white” 

LB(w) = 2 

LB(b) = 3 

parent 

Termination Condition True 

LB(w)=10 =UB(w) 

LB(b)=12 

. . . . 
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Example  

concurrently choose,  
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Revisiting Abandoned Solutions 

Problem 

– reconstructing from scratch is inefficient 

– remembering solutions is expensive  

Solution 

– backtrack thresholds – polynomial space 

– control backtracking to efficiently re-search 

parent 
backtrack 

threshold  

= 10 

parent 

. . . . 

parent 

. . . . 

Explore “white” first 

LB(w) = 10 

LB(b) = 0 

Now explore “black” 

LB(w) = 10 

LB(b) = 11 

Return to “white” 

Parent informs child of lower bound: 
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Backtrack Thresholds 

 Suppose agent i received threshold = 10 from its parent 

Explore “white” first 

LB(w) = 0 

LB(b) = 0 

threshold = 10 

Receive cost msg 

LB(w) = 2 

LB(b) = 0 

threshold = 10 

 Stick with “white” 

LB(w) = 2 

LB(b) = 0 

threshold = 10 

 

 

Receive more cost msgs 

LB(w) = 11 

LB(b) = 0 

threshold = 10 

Now try black 

LB(w) = 11 

LB(b) = 0 

threshold = 10 

 

 

agent i  agent i 

Key Point: Don’t 

change value until 

LB(current value) > 

threshold. 
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parent parent parent 

thresh=5 thresh=5 LB=6 
thresh=4 thresh=6 

Time T1 Time T2 Time T3 

LB(w) = 10 
parent 

multiple 

children 

thresh = ? thresh = ? 

Third key idea: Dynamically rebalance threshold 

LB(w) = 10 LB(w) = 10 LB(w) = 10 

Backtrack thresholds with multiple  

children 

How to correctly 

subdivide threshold? 



ADOPT (1) 
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ADOPT(2) 
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ADOPT (3) 
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ADOPT (4) 
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ADOPT (5) 

22 



23 

Evaluation of Speedups 

Conclusions  

 

• Adopt’s lower bound search method and parallelism yields 

significant efficiency gains 

 

• Sparse graphs (density 2) solved optimally, efficiently by Adopt. 
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Number of Messages 

Conclusion 

• Communication grows linearly 

• only local communication (no broadcast) 
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Bounded error approximation 

 Motivation Quality control for approximate solutions 

 Problem User provides error bound b  

 Goal Find any solution S where  

 cost(S)  cost(optimal soln) + b  

• Fourth key idea: Adopt’s lower-

bound based search method 

naturally leads to bounded error 

approximation! 

lower bound = 10 root 

threshold = 10 + b  
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Evaluation of Bounded Error 

Conclusion  

 

• Time-to-solution decreases as b is increased. 

 

• Plus: Guaranteed worst-case performance!  



Optimality of Adopt 

• For finite DCOPs with binary non-negative constraints, Adopt 
is guaranteed to terminate with the globally optimal solution 
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Adopt summary – Key Ideas 

• Optimal, asynchronous algorithm for DCOP 

– polynomial space at each agent 

• Weak Backtracking   

– lower bound based search method 

– Parallel search in independent subtree 

• Efficient reconstruction of abandoned solutions 

– backtrack thresholds to control backtracking 

• Bounded error approximation 

– sub-optimal solutions faster 

– bound on worst-case performance 
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Traffic Light Control DCOP 
Formulation 
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1 2 3 

4 5 6 

7 8 9 

𝜌𝑖,𝑗   density of vehicle in the lane 𝑖 → 𝑗 

𝛽𝑖,𝑗 =
𝜌𝑖,𝑗

 𝜌𝑘,𝑗𝑘
   fraction of traffic at intersection j coming from I 

𝛾𝑖,𝑗   1.5 (if i and j synchronized), 2 otherwise 

𝜏𝑖,𝑗 ∈ 0, 1, 1.5, 2  degree of alignment of synchronization with traffic  

Constraint cost 
𝑓𝑖,𝑗 = 𝛽𝑖,𝑗  𝜏𝑖,𝑗  𝛾𝑖,𝑗 

+ synchronized in direction of max traffic 

- synchronized in other directions 

from: R. Junges and A. L. C. Bazzan. Evaluating the performance of DCOP algorithms in a real 

world, dynamic problem. In AAMAS 2008, pages 599–606, 2008  



Results - Complexity 
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Results - Quality 
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Case 1 = worst case 

Case 2 = static optimum 

Case 3 = dynamic optimization 



Conclusion 

• Distributed constraint optimization is a general widely applicable 
model 

• Optimal (complete) asynchronous algorithms exist for DCOPs with 
binary, non-negative constraints 
– ADOPT, OptAPO, DPOP 

– Different computation and communication complexity profiles 

• ADOPT 
– optimal, asynchronous algorithm for DCOP 

– polynomial space at each agent 

• Reading: 
– [Vidal] – Chapter 2 

– P. J. Modi et al. ADOPT: Asynchronous Distributed Constraint 
Optimization with Quality Guarantees. Artificial Intelligence Journal, 
161(1-2):149–180, January 2005. 


