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Dynamic Traffic Light Scheduling 

• Minimize traffic delay in a road grid by synchronizing lights 

traffic light agent 

• can communicate locally 

• can adopt four synchronization strategies (NS,SN,WE, EW) 

green wave 



Constraint Optimization Problem 
(COP) 
• Problem specification: 

– 𝑋 = {𝑥𝑖 , … , 𝑥𝑚} set of variables 

– 𝐷 = {𝐷𝑖 , … , 𝐷𝑚} set of domains for the variables, i.e. 𝑥𝑖 ∈ 𝐷𝑖; if 

𝐷𝑖is finite, let 𝐷𝑖 = 𝑣𝑖,1, … , 𝑣𝑖,𝑑 𝑖  

– 𝐶 = {𝑐1, … , 𝑐𝑘} set of constraints over 𝑋; the constraint 𝑐𝑖 is 

represented by a real-valued function 𝑃𝑖 𝑦1, … , 𝑦𝑗 → 𝑹,

 𝑦1, … , 𝑦𝑗 ⊆ 𝑋 that determines the degree of constraint 

violation (constraint value) for a given assignment 

• Solution: 

– find an assignment of variables {𝑥𝑖 , … , 𝑥𝑚} such that the sum of 
all constraint values is minimized 
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Distributed Constraint Optimization 
Problem (DCOP) 
• 𝐴 = {𝐴1, … , 𝐴𝑛} set of agents 

• Each agent 𝐴𝑖 is responsible for one variable 𝑥𝑖  

– extension to multiple variables per agent possible 

• Agent can communicate by sending messages 

• Example 
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(D)COP with Binary Non-Negative 
Constraints 

• Constraints involve two variables at maximum: 𝑃 𝑥𝑖 , 𝑥𝑗  

• Constraint values are not negative: 𝑃 𝑥𝑖 , 𝑥𝑗 ≥ 0 

• => addition of constraints cannot decrease the overall sum 
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Solution Algorithms 

• Requirements on a good algorithm: 

– terminates in a finite number of steps 

– is complete: finds an optimum solution (always exists) 

– (is sound: the solution returned is indeed optimum) 

• Existing algorithms 

– Asynchronous Distributed Optimization (ADOPT)  

– Optimal Asynchronous Partial Overlay (OptAPO)  

– Dynamic Parameter Optimization Problem (DPOP) 

• Trade-offs between running time (number of cycles), number 
of messages and size of messages 

• Recently, incomplete local search algorithms also proposed 
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Centralized Branch-and-Bound 
Algorithm 

8 



9 

Desiderata for DCOP 

Why is distributed important? 

 Autonomy 

 Communication cost 

 Robustness (central point of failure) 

 Privacy 

 

Why is asynchrony important?  

 Parallelism 

 Robust to communication delays 

 No global clock 

 

Why are theoretical guarantees important? 

 Optimal solutions feasible for special classes 

 Bound on worst-case performance 

loosely connected 

communities 
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State of the Art in DCOP (~2004) 

Why have previous distributed methods failed to provide  

asynchrony + optimality?  

 

 Branch and Bound 
– Backtrack condition - when cost exceeds upper bound 

– Problem – sequential, synchronous 

 Asynchronous Backtracking 
– Backtrack condition - when constraint is unsatisfiable 

– Problem - only hard constraints allowed 

 

 Observation  Previous approaches backtrack only when sub-
optimality is proven  
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Adopt: Asynchronous Distributed Optimization 

First key idea -- Weak backtracking  

 Adopt’s backtrack condition – when lower bound gets too high 
 

Why lower bounds?  

 allows asynchrony 

 allows soft constraints 

 allows quality guarantees 

 

Any downside? 

 backtrack before sub-optimality is proven 

 solutions need revisiting 
– Second key idea -- Efficient reconstruction of abandoned solutions 
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 Agents are ordered in a tree 
– constraints between 

ancestors/descendents 

– no constraints between siblings 

 

 

 Basic Algorithm: 
– choose value with min cost 
– Loop until termination-condition true: 

 When receive message:  

– choose value with min cost  

– send VALUE message to 
descendents  

– send COST message to parent 

– send THRESHOLD message to child 

 

Adopt Algorithm 

Constraint Graph 

x1 

x2 

x3 x4 

x1 

x2 

x4 x3 

VALUE messages 

COST messages 

THRESH messages 

Tree Ordering 

x1 

x2 

x3 x4 



13 

Weak Backtracking 

 Suppose parent has two values, “white” and “black” 

parent 

Explore “white” first 

LB(w) = 0 

LB(b) = 0 

parent 

Receive cost msg 

LB(w) = 2 

LB(b) = 0 

parent 

 Now explore “black” 

LB(w) = 2 

LB(b) = 0 

 

 

parent 

Receive cost msg 

LB(w) = 2 

LB(b) = 3 

parent 

Go back to “white” 

LB(w) = 2 

LB(b) = 3 

parent 

Termination Condition True 

LB(w)=10 =UB(w) 

LB(b)=12 

. . . . 
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Example  
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Revisiting Abandoned Solutions 

Problem 

– reconstructing from scratch is inefficient 

– remembering solutions is expensive  

Solution 

– backtrack thresholds – polynomial space 

– control backtracking to efficiently re-search 

parent 
backtrack 

threshold  

= 10 

parent 

. . . . 

parent 

. . . . 

Explore “white” first 

LB(w) = 10 

LB(b) = 0 

Now explore “black” 

LB(w) = 10 

LB(b) = 11 

Return to “white” 

Parent informs child of lower bound: 
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Backtrack Thresholds 

 Suppose agent i received threshold = 10 from its parent 

Explore “white” first 

LB(w) = 0 

LB(b) = 0 

threshold = 10 

Receive cost msg 

LB(w) = 2 

LB(b) = 0 

threshold = 10 

 Stick with “white” 

LB(w) = 2 

LB(b) = 0 

threshold = 10 

 

 

Receive more cost msgs 

LB(w) = 11 

LB(b) = 0 

threshold = 10 

Now try black 

LB(w) = 11 

LB(b) = 0 

threshold = 10 

 

 

agent i  agent i 

Key Point: Don’t 

change value until 

LB(current value) > 

threshold. 
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parent parent parent 

thresh=5 thresh=5 LB=6 
thresh=4 thresh=6 

Time T1 Time T2 Time T3 

LB(w) = 10 
parent 

multiple 

children 

thresh = ? thresh = ? 

Third key idea: Dynamically rebalance threshold 

LB(w) = 10 LB(w) = 10 LB(w) = 10 

Backtrack thresholds with multiple  

children 

How to correctly 

subdivide threshold? 



ADOPT (1) 
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ADOPT(2) 
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ADOPT (3) 
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ADOPT (4) 
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ADOPT (5) 
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Evaluation of Speedups 

Conclusions  

 

• Adopt’s lower bound search method and parallelism yields 

significant efficiency gains 

 

• Sparse graphs (density 2) solved optimally, efficiently by Adopt. 
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Number of Messages 

Conclusion 

• Communication grows linearly 

• only local communication (no broadcast) 
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Bounded error approximation 

 Motivation Quality control for approximate solutions 

 Problem User provides error bound b  

 Goal Find any solution S where  

 cost(S)  cost(optimal soln) + b  

• Fourth key idea: Adopt’s lower-

bound based search method 

naturally leads to bounded error 

approximation! 

lower bound = 10 root 

threshold = 10 + b  
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Evaluation of Bounded Error 

Conclusion  

 

• Time-to-solution decreases as b is increased. 

 

• Plus: Guaranteed worst-case performance!  



Optimality of Adopt 

• For finite DCOPs with binary non-negative constraints, Adopt 
is guaranteed to terminate with the globally optimal solution 
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Adopt summary – Key Ideas 

• Optimal, asynchronous algorithm for DCOP 

– polynomial space at each agent 

• Weak Backtracking   

– lower bound based search method 

– Parallel search in independent subtree 

• Efficient reconstruction of abandoned solutions 

– backtrack thresholds to control backtracking 

• Bounded error approximation 

– sub-optimal solutions faster 

– bound on worst-case performance 
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Traffic Light Control DCOP 
Formulation 
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1 2 3 

4 5 6 

7 8 9 

𝜌𝑖,𝑗   density of vehicle in the lane 𝑖 → 𝑗 

𝛽𝑖,𝑗 =
𝜌𝑖,𝑗

 𝜌𝑘,𝑗𝑘
   fraction of traffic at intersection j coming from I 

𝛾𝑖,𝑗   1.5 (if i and j synchronized), 2 otherwise 

𝜏𝑖,𝑗 ∈ 0, 1, 1.5, 2  degree of alignment of synchronization with traffic  

Constraint cost 
𝑓𝑖,𝑗 = 𝛽𝑖,𝑗  𝜏𝑖,𝑗  𝛾𝑖,𝑗 

+ synchronized in direction of max traffic 

- synchronized in other directions 

from: R. Junges and A. L. C. Bazzan. Evaluating the performance of DCOP algorithms in a real 

world, dynamic problem. In AAMAS 2008, pages 599–606, 2008  



Results - Complexity 
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Results - Quality 
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Case 1 = worst case 

Case 2 = static optimum 

Case 3 = dynamic optimization 



Conclusion 

• Distributed constraint optimization is a general widely applicable 
model 

• Optimal (complete) asynchronous algorithms exist for DCOPs with 
binary, non-negative constraints 
– ADOPT, OptAPO, DPOP 

– Different computation and communication complexity profiles 

• ADOPT 
– optimal, asynchronous algorithm for DCOP 

– polynomial space at each agent 

• Reading: 
– [Vidal] – Chapter 2 

– P. J. Modi et al. ADOPT: Asynchronous Distributed Constraint 
Optimization with Quality Guarantees. Artificial Intelligence Journal, 
161(1-2):149–180, January 2005. 


