
Distributed Constraint Optimization

Michal Jakob

Agent Technology Center, Dept. of Cybernetics, FEE Czech Technical University

A4M33MAS Autumn 2010 - Lect. 12

(based partially on slides by Jay Modi)

Dynamic Traffic Light Scheduling

• Minimize traffic delay in a road grid by synchronizing lights

traffic light agent

• can communicate locally

• can adopt four synchronization strategies (NS,SN,WE, EW)

green wave

Constraint Optimization Problem
(COP)
• Problem specification:

– 𝑋 = {𝑥𝑖 , … , 𝑥𝑚} set of variables

– 𝐷 = {𝐷𝑖 , … , 𝐷𝑚} set of domains for the variables, i.e. 𝑥𝑖 ∈ 𝐷𝑖; if

𝐷𝑖is finite, let 𝐷𝑖 = 𝑣𝑖,1, … , 𝑣𝑖,𝑑 𝑖

– 𝐶 = {𝑐1, … , 𝑐𝑘} set of constraints over 𝑋; the constraint 𝑐𝑖 is

represented by a real-valued function 𝑃𝑖 𝑦1, … , 𝑦𝑗 → 𝑹,

 𝑦1, … , 𝑦𝑗 ⊆ 𝑋 that determines the degree of constraint

violation (constraint value) for a given assignment

• Solution:

– find an assignment of variables {𝑥𝑖 , … , 𝑥𝑚} such that the sum of
all constraint values is minimized

3

Example

4

4

x1

x2

x3 x4

F(A) = 4

x1

x2

x3 x4

F(A) = 0

x1

x2

x3 x4

F(A) = 7

Constraint Graph

x1

x2

x3 x4

di dj f(di,dj)

 1

 2

 2

 0

2
1 1

1 1

0
0

0 0

1

2 2

Distributed Constraint Optimization
Problem (DCOP)
• 𝐴 = {𝐴1, … , 𝐴𝑛} set of agents

• Each agent 𝐴𝑖 is responsible for one variable 𝑥𝑖

– extension to multiple variables per agent possible

• Agent can communicate by sending messages

• Example

5

(D)COP with Binary Non-Negative
Constraints

• Constraints involve two variables at maximum: 𝑃 𝑥𝑖 , 𝑥𝑗

• Constraint values are not negative: 𝑃 𝑥𝑖 , 𝑥𝑗 ≥ 0

• => addition of constraints cannot decrease the overall sum

6

Solution Algorithms

• Requirements on a good algorithm:

– terminates in a finite number of steps

– is complete: finds an optimum solution (always exists)

– (is sound: the solution returned is indeed optimum)

• Existing algorithms

– Asynchronous Distributed Optimization (ADOPT)

– Optimal Asynchronous Partial Overlay (OptAPO)

– Dynamic Parameter Optimization Problem (DPOP)

• Trade-offs between running time (number of cycles), number
of messages and size of messages

• Recently, incomplete local search algorithms also proposed

7

Centralized Branch-and-Bound
Algorithm

8

9

Desiderata for DCOP

Why is distributed important?

 Autonomy

 Communication cost

 Robustness (central point of failure)

 Privacy

Why is asynchrony important?

 Parallelism

 Robust to communication delays

 No global clock

Why are theoretical guarantees important?

 Optimal solutions feasible for special classes

 Bound on worst-case performance

loosely connected

communities

10

State of the Art in DCOP (~2004)

Why have previous distributed methods failed to provide

asynchrony + optimality?

 Branch and Bound
– Backtrack condition - when cost exceeds upper bound

– Problem – sequential, synchronous

 Asynchronous Backtracking
– Backtrack condition - when constraint is unsatisfiable

– Problem - only hard constraints allowed

 Observation Previous approaches backtrack only when sub-
optimality is proven

11

Adopt: Asynchronous Distributed Optimization

First key idea -- Weak backtracking

 Adopt’s backtrack condition – when lower bound gets too high

Why lower bounds?

 allows asynchrony

 allows soft constraints

 allows quality guarantees

Any downside?

 backtrack before sub-optimality is proven

 solutions need revisiting
– Second key idea -- Efficient reconstruction of abandoned solutions

12

 Agents are ordered in a tree
– constraints between

ancestors/descendents

– no constraints between siblings

 Basic Algorithm:
– choose value with min cost
– Loop until termination-condition true:

 When receive message:

– choose value with min cost

– send VALUE message to
descendents

– send COST message to parent

– send THRESHOLD message to child

Adopt Algorithm

Constraint Graph

x1

x2

x3 x4

x1

x2

x4 x3

VALUE messages

COST messages

THRESH messages

Tree Ordering

x1

x2

x3 x4

13

Weak Backtracking

 Suppose parent has two values, “white” and “black”

parent

Explore “white” first

LB(w) = 0

LB(b) = 0

parent

Receive cost msg

LB(w) = 2

LB(b) = 0

parent

 Now explore “black”

LB(w) = 2

LB(b) = 0

parent

Receive cost msg

LB(w) = 2

LB(b) = 3

parent

Go back to “white”

LB(w) = 2

LB(b) = 3

parent

Termination Condition True

LB(w)=10 =UB(w)

LB(b)=12

. . . .

14

Example

concurrently choose,

send to descendents

x1

x2

x3 x4

report lower bounds

x1

x2

x3 x4

LB =1 LB=2

LB =1

x4

x1 switches value

x1

x2

x3

x2, x3 switch value,

report new lower bounds

Note: x3’s cost message to x2

is obsolete since x1 has changed

value, msg will be disregarded

x1

x2

x3 x4

LB=0

LB=2

Constraint Graph

x1

x2

x3 x4

di dj f(di,dj)

 1

 2

 2

 0
optimal solution

x1

x2

x3 x4

LB=0

 x2, x3 report new lower bounds

x1

x2

x3 x4 LB=0

LB=0

15

Revisiting Abandoned Solutions

Problem

– reconstructing from scratch is inefficient

– remembering solutions is expensive

Solution

– backtrack thresholds – polynomial space

– control backtracking to efficiently re-search

parent
backtrack

threshold

= 10

parent

. . . .

parent

. . . .

Explore “white” first

LB(w) = 10

LB(b) = 0

Now explore “black”

LB(w) = 10

LB(b) = 11

Return to “white”

Parent informs child of lower bound:

16

Backtrack Thresholds

 Suppose agent i received threshold = 10 from its parent

Explore “white” first

LB(w) = 0

LB(b) = 0

threshold = 10

Receive cost msg

LB(w) = 2

LB(b) = 0

threshold = 10

 Stick with “white”

LB(w) = 2

LB(b) = 0

threshold = 10

Receive more cost msgs

LB(w) = 11

LB(b) = 0

threshold = 10

Now try black

LB(w) = 11

LB(b) = 0

threshold = 10

agent i agent i

Key Point: Don’t

change value until

LB(current value) >

threshold.

17

parent parent parent

thresh=5 thresh=5 LB=6
thresh=4 thresh=6

Time T1 Time T2 Time T3

LB(w) = 10
parent

multiple

children

thresh = ? thresh = ?

Third key idea: Dynamically rebalance threshold

LB(w) = 10 LB(w) = 10 LB(w) = 10

Backtrack thresholds with multiple

children

How to correctly

subdivide threshold?

ADOPT (1)

18

ADOPT(2)

19

ADOPT (3)

20

ADOPT (4)

21

ADOPT (5)

22

23

Evaluation of Speedups

Conclusions

• Adopt’s lower bound search method and parallelism yields

significant efficiency gains

• Sparse graphs (density 2) solved optimally, efficiently by Adopt.

24

Number of Messages

Conclusion

• Communication grows linearly

• only local communication (no broadcast)

25

Bounded error approximation

 Motivation Quality control for approximate solutions

 Problem User provides error bound b

 Goal Find any solution S where

 cost(S)  cost(optimal soln) + b

• Fourth key idea: Adopt’s lower-

bound based search method

naturally leads to bounded error

approximation!

lower bound = 10 root

threshold = 10 + b

26

Evaluation of Bounded Error

Conclusion

• Time-to-solution decreases as b is increased.

• Plus: Guaranteed worst-case performance!

Optimality of Adopt

• For finite DCOPs with binary non-negative constraints, Adopt
is guaranteed to terminate with the globally optimal solution

27

Adopt summary – Key Ideas

• Optimal, asynchronous algorithm for DCOP

– polynomial space at each agent

• Weak Backtracking

– lower bound based search method

– Parallel search in independent subtree

• Efficient reconstruction of abandoned solutions

– backtrack thresholds to control backtracking

• Bounded error approximation

– sub-optimal solutions faster

– bound on worst-case performance

28

Traffic Light Control DCOP
Formulation

29

1 2 3

4 5 6

7 8 9

𝜌𝑖,𝑗 density of vehicle in the lane 𝑖 → 𝑗

𝛽𝑖,𝑗 =
𝜌𝑖,𝑗

 𝜌𝑘,𝑗𝑘
 fraction of traffic at intersection j coming from I

𝛾𝑖,𝑗 1.5 (if i and j synchronized), 2 otherwise

𝜏𝑖,𝑗 ∈ 0, 1, 1.5, 2 degree of alignment of synchronization with traffic

Constraint cost
𝑓𝑖,𝑗 = 𝛽𝑖,𝑗 𝜏𝑖,𝑗 𝛾𝑖,𝑗

+ synchronized in direction of max traffic

- synchronized in other directions

from: R. Junges and A. L. C. Bazzan. Evaluating the performance of DCOP algorithms in a real

world, dynamic problem. In AAMAS 2008, pages 599–606, 2008

Results - Complexity

30

Results - Quality

31

Case 1 = worst case

Case 2 = static optimum

Case 3 = dynamic optimization

Conclusion

• Distributed constraint optimization is a general widely applicable
model

• Optimal (complete) asynchronous algorithms exist for DCOPs with
binary, non-negative constraints
– ADOPT, OptAPO, DPOP

– Different computation and communication complexity profiles

• ADOPT
– optimal, asynchronous algorithm for DCOP

– polynomial space at each agent

• Reading:
– [Vidal] – Chapter 2

– P. J. Modi et al. ADOPT: Asynchronous Distributed Constraint
Optimization with Quality Guarantees. Artificial Intelligence Journal,
161(1-2):149–180, January 2005.

