Distributed Constraint Optimization

Michal Jakob

Agent Technology Center, Dept. of Cybernetics, FEE Czech Technical University

A4M33MAS Autumn 2010 - Lect. 12

(based partially on slides by Jay Modi)

Dynamic Traffic Light Scheduling

• Minimize traffic delay in a road grid by synchronizing lights

traffic light agent

- can communicate locally
- can adopt four synchronization strategies (NS,SN,WE, EW)

Constraint Optimization Problem (COP)

- Problem specification:
 - $X = \{x_i, \dots, x_m\}$ set of **variables**
 - $D = \{D_i, ..., D_m\}$ set of **domains** for the variables, i.e. $x_i \in D_i$; if D_i is finite, let $D_i = \{v_{i,1}, ..., v_{i,d(i)}\}$
 - $C = \{c_1, ..., c_k\}$ set of **constraints** over X; the constraint c_i is represented by a real-valued function $P_i(y_1, ..., y_j) \rightarrow \mathbf{R}$, $\{y_1, ..., y_j\} \subseteq X$ that determines the **degree of constraint violation (constraint value)** for a given assignment
- Solution:
 - find an **assignment** of variables $\{x_i, ..., x_m\}$ such that the **sum of all constraint values is minimized**

Example

Constraint Graph

Distributed Constraint Optimization Problem (DCOP)

- $A = \{A_1, \dots, A_n\}$ set of agents
- Each agent A_i is responsible for one variable x_i
 - extension to multiple variables per agent possible
- Agent can communicate by sending messages
- Example

(D)COP with Binary Non-Negative Constraints

- Constraints involve **two variables** at maximum: $P(x_i, x_j)$
- Constraint values are **not negative:** $P(x_i, x_j) \ge 0$
- => addition of constraints **cannot decrease** the overall sum

Solution Algorithms

- Requirements on a good algorithm:
 - terminates in a finite number of steps
 - is **complete**: finds an optimum solution (always exists)
 - (is **sound**: the solution returned is indeed optimum)
- Existing algorithms
 - Asynchronous Distributed Optimization (ADOPT)
 - Optimal Asynchronous Partial Overlay (OptAPO)
 - Dynamic Parameter Optimization Problem (DPOP)
- Trade-offs between running time (number of cycles), number of messages and size of messages
- Recently, incomplete local search algorithms also proposed

Centralized Branch-and-Bound Algorithm

```
BRANCH-AND-BOUND-COP()
```

- 1 $c \ast \leftarrow \infty$ \triangleright Minimum cost found. Global variable.
- 2 $g \ast \leftarrow \emptyset$ \triangleright Best solution found. Global variable.
- 3 **BRANCH-AND-BOUND-COP-HELPER** $(1, \emptyset)$
- 4 return g^*

```
BRANCH-AND-BOUND-COP-HELPER(i,g)
```

```
if i = n
1
       then if P(g) < c^*
2
3
                 then g^* \leftarrow g
                        c^* \leftarrow P(g)
4
5
               return
6
    for v \in D_i
          do g' \leftarrow g + \{x_i \leftarrow v\}
7
8
               if P(g) < c^*
                 then branch-and-bound-cop-helper(i+1,g')
9
```


Desiderata for DCOP

Why is **distributed** important?

- Autonomy
- Communication cost
- Robustness (central point of failure)
- Privacy

Why is asynchrony important?

- Parallelism
- Robust to communication delays
- No global clock

Why are theoretical guarantees important?

- Optimal solutions feasible for special classes
- Bound on worst-case performance

loosely connected communities

State of the Art in DCOP (~2004)

Why have previous distributed methods failed to provide asynchrony + optimality?

- Branch and Bound
 - Backtrack condition when cost exceeds upper bound
 - Problem sequential, synchronous
- Asynchronous Backtracking
 - Backtrack condition when constraint is unsatisfiable
 - Problem only hard constraints allowed
- Observation Previous approaches backtrack only when suboptimality is proven

Adopt: Asynchronous Distributed Optimization

First key idea -- Weak backtracking

Adopt's backtrack condition – when lower bound gets too high

Why lower bounds?

- allows asynchrony
- allows soft constraints
- allows quality guarantees

Any downside?

- backtrack *before* sub-optimality is proven
- solutions need revisiting
 - Second key idea -- Efficient reconstruction of abandoned solutions

Adopt Algorithm

- Agents are ordered in a tree
 - constraints between ancestors/descendents
 - no constraints between siblings

Basic Algorithm:

- choose value with min cost
- Loop until termination-condition true:
 - When receive message:
 - choose value with min cost
 - send VALUE message to descendents
 - send COST message to parent
 - send THRESHOLD message to child

Weak Backtracking

• Suppose parent has two values, "white" and "black"

LB=0

x4

x1

x2

optimal solution

Example

x4

LB=0

Revisiting Abandoned Solutions

Problem

- reconstructing from scratch is inefficient
- remembering solutions is expensive

Solution

- backtrack thresholds polynomial space
- control backtracking to efficiently re-search

Parent informs child of lower bound:

Backtrack Thresholds

• Suppose agent i received threshold = 10 from its parent

USC UNIVERSITY OF SOUTHERN CALIFORNIA Backtrack thresholds with multiple agents@USC children $\mathbf{b}\mathbf{B}(\mathbf{w}) = \mathbf{10}$ parent multiple How to correctly children subdivide threshold? Third key idea: Dynamically rebalance threshold Time T_1 Time T_2 Time T₃ LB(w) = 10 $\mathbf{L}\mathbf{B}(\mathbf{w}) = \mathbf{10}$ $\mathbf{LB}(\mathbf{w}) = \mathbf{10}$ parent parent barent thresh=4 thresh=6 **LB=6** 7

ADOPT (1)

```
6 BACKTRACK()
```


ADOPT(2)

HANDLE-VALUE (j, x_j)				
1	if \neg received-terminate			
2	then $current-context[j] \leftarrow x_j$			
3	for $d \in D_i, c \in children$ such that $context[d, c]$ is			
	incompatible with <i>current-context</i>			
4	do reset-variables (d, c)			
5	MAINTAIN-THRESHOLD-INVARIANT()			
6	BACKTRACK()			

```
HANDLE-COST(k, context, lb, ub)
```

1	$d \leftarrow context[i]$
2	delete $context[i]$
3	if \neg received-terminate
4	then for $(j, x_j) \in context$ and j is not my neighbor
5	do $current-context[j] \leftarrow x_j$
6	for $d' \in D_i, c \in children$ such that $context[d, c]$ is
	incompatible with <i>current-context</i>
7	do reset-variables (d', c)
8	if <i>context</i> compatible with <i>current-context</i>
9	then $lower$ - $bound[d, k] \leftarrow lb$
10	$upper-bound[d,k] \leftarrow ub$
11	$context[d, k] \leftarrow context$
12	MAINTAIN-CHILD-THRESHOLD-INVARIANT()
13	MAINTAIN-THRESHOLD-INVARIANT()
14	BACKTRACK()

ADOPT (3)

BACKTRACK()

if threshold = $\min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} upper-bound[d, c]$ then $x_i \leftarrow \arg\min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} upper-bound[d, c]$ $\mathbf{2}$ else if threshold $< cost(x_i) + \sum_{c \in children} lower-bound[x_i, c]$ $\mathbf{3}$ then $x_i \leftarrow \arg\min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} lower-bound[d, c]$ 4 $\forall_{k \in neighbors \land k \text{ has lower priority}} k.\text{HANDLE-VALUE}(i, x_i)$ $\mathbf{5}$ 6 MAINTAIN-ALLOCATION-INVARIANT() if threshold = $\min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} upper-bound[d, c]$ and 7 (received-terminate or I am root) $\forall_{c \in children} c. \text{HANDLE-TERMINATE}(current-context})$ 9 exit parent .HANDLE-COST(current-context,

8 then
$$current-context[i] \leftarrow x_i$$

10

11

 $\begin{array}{l} \min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} lower-bound[d, c], \\ \min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} upper-bound[d, c]) \end{array}$

ADOPT (4)

```
MAINTAIN-THRESHOLD-INVARIANT()
```

- 1 if threshold $< \min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} lower-bound[d, c]$
- 2 then threshold $\leftarrow \min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} lower-bound[d, c]$
- 3 if threshold > $\min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} upper-bound[d, c]$
- 4 then threshold $\leftarrow \min_{d \in D_i} \operatorname{cost}(d) + \sum_{c \in children} upper-bound[d, c]$

MAINTAIN-ALLOCATION-INVARIANT()

1 while threshold > $\cot(x_i) + \sum_{c \in children} t[x_i, c]$ 2 do $chosen \leftarrow c' \in children$ such that $upper-bound[x_i, c'] > t[x_i, c']$ 3 $t[x_i, chosen] \leftarrow t[x_i, chosen] + 1$ 4 while threshold < $\cot(x_i) + \sum_{c \in children} t[x_i, c]$ 5 do $chosen \leftarrow c' \in children$ such that $lower-bound[x_i, c'] < t[x_i, c']$ 6 $t[x_i, chosen] \leftarrow t[x_i, chosen] - 1$ 7 $\forall_{c \in children} c.HANDLE-THRESHOLD(t[x_i, chosen], current-context)$

MAINTAIN-CHILD-THRESHOLD-INVARIANT()

```
 \begin{array}{lll} & \text{for } d \in D_i, c \in children \\ & \text{do if } lower-bound[d,c] > t[d,c] \\ & \text{do if } lower-bound[d,c] \\ & \text{then } t[d,c] \leftarrow lower-bound[d,c] \\ & \text{for } d \in D_i, c \in children \\ & \text{do if } upper-bound[d,c] < t[d,c] \\ & \text{then } t[d,c] \leftarrow upper-bound[d,c] \\ & \end{array}
```


ADOPT (5)

```
HANDLE-THRESHOLD(t, context)
```

```
1 if context is compatible with current-context
```

```
HANDLE-TERMINATE(context)
```

```
1 \quad \textit{received-terminate} \leftarrow \texttt{TRUE}
```

```
2 \quad current\text{-}context \leftarrow context
```

```
3 BACKTRACK()
```


Evaluation of Speedups

Conclusions

• Adopt's lower bound search method and parallelism yields significant efficiency gains

• Sparse graphs (density 2) solved optimally, efficiently by Adopt. 23

Number of Messages

Conclusion

- Communication grows linearly
 - only local communication (no broadcast)

Bounded error approximation

- USC UNIVERSITY OF SOUTHERN CALIFORNIA agents@USC
- Motivation Quality control for approximate solutions
- Problem User provides error bound b
- Goal Find any solution S where

cost(S) ≤ cost(optimal soln) + **○**

• Fourth key idea: Adopt's lowerbound based search method naturally leads to bounded error approximation!

Evaluation of Bounded Error

Conclusion

- Time-to-solution decreases as **b** is increased.
- Plus: Guaranteed worst-case performance!

USC UNIVERSITY OF SOUTHERN CALIFORNIA

agents@USC

Optimality of Adopt

• For finite DCOPs with binary non-negative constraints, Adopt is **guaranteed to terminate** with the **globally optimal solution**

Adopt summary – Key Ideas

- **Optimal**, asynchronous algorithm for DCOP
 - polynomial space at each agent
- Weak Backtracking
 - lower bound based search method
 - Parallel search in independent subtree
- Efficient reconstruction of abandoned solutions
 - backtrack thresholds to control backtracking
- Bounded error approximation
 - sub-optimal solutions faster
 - bound on worst-case performance

Traffic Light Control DCOP Formulation

 $\begin{array}{ll} \rho_{i,j} & \text{density of vehicle in the lane } i \to j \\ \beta_{i,j} = \frac{\rho_{i,j}}{\sum_k \rho_{k,j}} & \text{fraction of traffic at intersection } j \text{ coming from } I \\ \gamma_{i,j} & 1.5 \text{ (if } i \text{ and } j \text{ synchronized}), 2 \text{ otherwise} \\ \tau_{i,j} \in \{0, 1, 1.5, 2\} & \text{degree of alignment of synchronization with traffic} \end{array}$

Plan run by agent i	Plan run by agent j	au
\oplus	\oplus	0
\ominus	\oplus	1
\oplus	\ominus	1.5
\ominus	\ominus	2

+ synchronized in direction of max traffic

- synchronized in other directions

Constraint cost

$$f_{i,j} = \beta_{i,j} \tau_{i,j} \gamma_{i,j}$$

from: R. Junges and A. L. C. Bazzan. Evaluating the performance of DCOP algorithms in a real world, dynamic problem. In AAMAS 2008, pages 599–606, 2008

Results - Complexity

Alg.	Nb. of Msgs	Msgs size	Total
		(bytes)	(MB)
ADOPT	358962.4 ± 1690.4	125.40 ± 20.79	43958
OptAPO	4015.66 ± 68.70	93.45 ± 8.15	366
DPOP	322	69286.78 ± 721.12	21787

Results - Quality

Net.	Experiment	Stopped Veh.	Density
3x3	Case 1 Case 2 Case 3 (ADOPT)	$10.21 \pm 2.28 \\ 6.72 \pm 1.37 \\ 1.88 \pm 0.53 \\ 1.97 \pm 0.60$	$\begin{array}{c} 0.29 \pm 0.06 \\ 0.23 \pm 0.03 \\ 0.11 \pm 0.02 \\ 0.11 \pm 0.01 \end{array}$
	Case 3 (DPOP)	2.42 ± 0.46	0.11 ± 0.01 0.13 ± 0.02
5x5	Case 1 Case 2 Case 3 (ADOPT) Case 3 (OptApo) Case 3 (DPOP)	$\begin{array}{c} 9.22 \pm 2.36 \\ 6.95 \pm 1.82 \\ 1.78 \pm 0.80 \\ 1.90 \pm 0.59 \\ 3.08 \pm 0.40 \end{array}$	$\begin{array}{c} 0.28 \pm 0.04 \\ 0.23 \pm 0.03 \\ 0.11 \pm 0.01 \\ 0.12 \pm 0.01 \\ 0.14 \pm 0.02 \end{array}$
7x7	Case 1 Case 2 Case 3 (ADOPT) Case 3 (OptApo) Case 3 (DPOP)	$\begin{array}{c} 8.91 \pm 2.29 \\ 5.82 \pm 1.31 \\ 1.97 \pm 0.50 \\ 1.91 \pm 0.49 \\ 2.90 \pm 0.62 \end{array}$	$\begin{array}{c} 0.27 \pm 0.04 \\ 0.21 \pm 0.02 \\ 0.12 \pm 0.01 \\ 0.12 \pm 0.01 \\ 0.14 \pm 0.01 \end{array}$
9x9	Case 1 Case 2 Case 3 (ADOPT) Case 3 (OptAPO) Case 3 (DPOP)	$\begin{array}{c} 8.05 \pm 2.17 \\ 5.35 \pm 0.97 \\ 2.04 \pm 0.77 \\ 1.98 \pm 0.85 \\ 2.88 \pm 0.72 \end{array}$	$\begin{array}{c} 0.14 \pm 0.01 \\ 0.10 \pm 0.01 \\ 0.12 \pm 0.01 \\ 0.11 \pm 0.01 \\ 0.13 \pm 0.02 \end{array}$

Case 1 = worst case

Case 2 = static optimum

Case 3 = dynamic optimization

Conclusion

- Distributed constraint optimization is a general widely applicable model
- Optimal (complete) asynchronous algorithms exist for DCOPs with binary, non-negative constraints
 - ADOPT, OptAPO, DPOP
 - Different computation and communication complexity profiles
- ADOPT
 - optimal, asynchronous algorithm for DCOP
 - polynomial space at each agent
- Reading:
 - [Vidal] Chapter 2
 - P. J. Modi et al. ADOPT: Asynchronous Distributed Constraint Optimization with Quality Guarantees. *Artificial Intelligence Journal*, 161(1-2):149–180, January 2005.

