Extensive Form Games

Lecture 7

Lecture Overview

(1) Perfect-Information Extensive-Form Games
(2) Subgame Perfection
(3) Backward Induction

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
- perfect information extensive-form games
- imperfect-information extensive-form games

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N is a set of n players

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A is a (single) set of actions

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H is a set of non-terminal choice nodes

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$ assigns to each choice node a set of possible actions

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$
- Player function: $\rho: H \rightarrow N$ assigns to each non-terminal node h a player $i \in N$ who chooses an action at h

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$
- Player function: $\rho: H \rightarrow N$
- Terminal nodes: Z is a set of terminal nodes, disjoint from H

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$
- Player function: $\rho: H \rightarrow N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \rightarrow H \cup Z$ maps a choice node and an action to a new choice node or terminal node such that for all $h_{1}, h_{2} \in H$ and $a_{1}, a_{2} \in A$, if $\sigma\left(h_{1}, a_{1}\right)=\sigma\left(h_{2}, a_{2}\right)$ then $h_{1}=h_{2}$ and $a_{1}=a_{2}$
- The choice nodes form a tree, so we can identify a node with its history.

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$
- Player function: $\rho: H \rightarrow N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \rightarrow H \cup Z$
- Utility function: $u=\left(u_{1}, \ldots, u_{n}\right) ; u_{i}: Z \rightarrow \mathbb{R}$ is a utility function for player i on the terminal nodes Z

Example: the sharing game

Example: the sharing game

Play as a fun game, dividing 100 dollar coins. (Play each partner only once.)

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
- player 1: 3; player 2: 8

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
- player 1: 3; player 2: 8
- Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

Definition (pure strategies)

Let $G=(N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$
\underset{h \in H, \rho(h)=i}{\times} \chi(h)
$$

Pure Strategies Example

What are the pure strategies for player 2?

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

What are the pure strategies for player 1 ?

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

What are the pure strategies for player 1 ?

- $S_{1}=\{(B, G) ;(B, H),(A, G),(A, H)\}$
- This is true even though, conditional on taking A, the choice between G and H will never have to be made

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

Theorem

Every perfect information game in extensive form has a PSNE
This is easy to see, since the players move sequentially.

Induced Normal Form

- In fact, the connection to the normal form is even tighter - we can "convert" an extensive-form game into normal form

Induced Normal Form

- In fact, the connection to the normal form is even tighter - we can "convert" an extensive-form game into normal form

	C		$C E$	
$C F$	$D E$	$D F$		
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

Induced Normal Form

- In fact, the connection to the normal form is even tighter - we can "convert" an extensive-form game into normal form

		$C E$		$C F$
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- this illustrates the lack of compactness of the normal form
- games aren't always this small
- even here we write down 16 payoff pairs instead of 5

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

	$C E$		$C F$	$D E$
$D F$				
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- while we can write any extensive-form game as a NF, we can't do the reverse.
- e.g., matching pennies cannot be written as a perfect-information extensive form game

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

		$C E$		$C F$		$D E$	$D F$
$A G$	3,8	3,8	8,3	8,3			
$A H$	3,8	3,8	8,3	8,3			
$B G$	5,5	2,10	5,5	2,10			
$B H$	5,5	1,0	5,5	1,0			

- What are the (three) pure-strategy equilibria?

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

		$C E$		$C F$
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
- $(A, G),(C, F)$
- $(A, H),(C, F)$
- $(B, H),(C, E)$

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

		$C E$		$C F$
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
- $(A, G),(C, F)$
- $(A, H),(C, F)$
- $(B, H),(C, E)$

Lecture Overview

(1) Perfect-Information Extensive-Form Games

(2) Subgame Perfection
(3) Backward Induction

Subgame Perfection

- There's something intuitively wrong with the equilibrium $(B, H),(C, E)$
- Why would player 1 ever choose to play H if he got to the second choice node?
- After all, G dominates H for him

Subgame Perfection

- There's something intuitively wrong with the equilibrium $(B, H),(C, E)$
- Why would player 1 ever choose to play H if he got to the second choice node?
- After all, G dominates H for him
- He does it to threaten player 2, to prevent him from choosing F, and so gets 5
- However, this seems like a non-credible threat
- If player 1 reached his second decision node, would he really follow through and play H ?

Formal Definition

Definition (subgame of G rooted at h)

The subgame of G rooted at h is the restriction of G to the descendents of H.

Definition (subgames of G)

The set of subgames of G is defined by the subgames of G rooted at each of the nodes in G.

- s is a subgame perfect equilibrium of G iff for any subgame G^{\prime} of G, the restriction of s to G^{\prime} is a Nash equilibrium of G^{\prime}
- Notes:
- since G is its own subgame, every SPE is a NE.
- this definition rules out "non-credible threats"

Which equilibria are subgame perfect?

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$:
- $(B, H),(C, E)$:
- $(A, H),(C, F)$:

Which equilibria are subgame perfect?

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$: is subgame perfect
- $(B, H),(C, E)$:
- $(A, H),(C, F)$:

Which equilibria are subgame perfect?

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$: is subgame perfect
- $(B, H),(C, E):(B, H)$ is an non-credible threat; not subgame perfect
- $(A, H),(C, F)$:

Which equilibria are subgame perfect?

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$: is subgame perfect
- $(B, H),(C, E):(B, H)$ is an non-credible threat; not subgame perfect
- $(A, H),(C, F):(A, H)$ is also non-credible, even though H is "off-path"

Lecture Overview

(1) Perfect-Information Extensive-Form Games

(2) Subgame Perfection
(3) Backward Induction

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree
function BACKWARDINDUCTION (node h) returns $u(h)$
if $h \in Z$ then
return $u(h)$
best_util $\leftarrow-\infty$
forall $a \in \chi(h)$ do
util_at_child \leftarrow BACKWARDINDUCTION $(\sigma(h, a))$
if util_at_child $_{\rho(h)}>$ best_util $_{\rho(h)}$ then
L best_util $\leftarrow u t i l _a t _c h i l d$
return best_util

- util_at_child is a vector denoting the utility for each player
- the procedure doesn't return an equilibrium strategy, but rather labels each node with a vector of real numbers.
- This labeling can be seen as an extension of the game's utility function to the non-terminal nodes
- The equilibrium strategies: take the best action at each node.

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree

```
function BACKWARDINDUCTION (node \(h\) ) returns \(u(h)\)
if \(h \in Z\) then
    return \(u(h)\)
best_util \(\leftarrow-\infty\)
forall \(a \in \chi(h)\) do
    util_at_child \(\leftarrow\) BACKWARDINDUCTION \((\sigma(h, a))\)
    if util_at_child \(_{\rho(h)}>\) best_util \(_{\rho(h)}\) then
        L best_util \(\leftarrow u t i l \_a t \_c h i l d\)
return best_util
```

- For zero-sum games, BACKWARDInduction has another name: the minimax algorithm.
- Here it's enough to store one number per node.
- It's possible to speed things up by pruning nodes that will never be reached in play: "alpha-beta pruning".
function ALPHABETAPRUNING (node h, real α, real β) returns $u_{1}(h)$

if $h \in Z$ then

return $u_{1}(h) \quad / / h$ is a terminal node
best_util $\leftarrow(2 \rho(h)-3) \times \infty \quad$ /I $-\infty$ for player $1 ; \infty$ for player 2
forall $a \in \chi(h)$ do
if $\rho(h)=1$ then
best_util $\leftarrow \max ($ best_util, AlphaBetaPruning $(\sigma(h, a), \alpha, \beta))$ if best_util $\geq \beta$ then
L return best_util
$\alpha \leftarrow \max (\alpha$, best_util $)$
else
best_util $\leftarrow \min \left(b e s t _u t i l, \operatorname{AlPhABETAPRUNING}(\sigma(h, a), \alpha, \beta)\right)$ if best_util $\leq \alpha$ then
L return best_util
$\beta \leftarrow \min (\beta$, best_util $)$
return best_util

