Extensive Form Games

Lecture 7

Extensive Form Games

≣⊧ ≣ ઝવલ Lecture 7, Slide 1

▲口▶ ▲圖▶ ▲圖▶ ▲圖▶

Lecture Overview

2 Subgame Perfection

Lecture 7, Slide 2

< 注 → < 注 →

Extensive Form Games

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

• Players: N is a set of n players

< ≣

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A is a (single) set of actions

< ≣

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H is a set of non-terminal choice nodes

- ∢ ≣ ▶

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$ assigns to each choice node a set of possible actions

글 🕨 🖌 글 🕨

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho:H\to N$ assigns to each non-terminal node h a player $i\in N$ who chooses an action at h

▶ < Ξ ▶ ...</p>

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z is a set of terminal nodes, disjoint from H

▶ < ≣ ▶

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \to H \cup Z$ maps a choice node and an action to a new choice node or terminal node such that for all $h_1, h_2 \in H$ and $a_1, a_2 \in A$, if $\sigma(h_1, a_1) = \sigma(h_2, a_2)$ then $h_1 = h_2$ and $a_1 = a_2$
 - The choice nodes form a tree, so we can identify a node with its history.

(< E) < E) = E</p>

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \rightarrow H \cup Z$
- Utility function: $u = (u_1, \ldots, u_n)$; $u_i : Z \to \mathbb{R}$ is a utility function for player *i* on the terminal nodes *Z*

Example: the sharing game

< Ξ

æ

Example: the sharing game

Play as a fun game, dividing 100 dollar coins. (Play each partner only once.)

Pure Strategies

Extensive Form Games

• In the sharing game (splitting 2 coins) how many pure strategies does each player have?

< ≣

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8

Extensive Form Games

Lecture 7, Slide 6

< ≣

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8
- Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

Definition (pure strategies)

Let $G=(N,A,H,Z,\chi,\rho,\sigma,u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

ł

$$\underset{u \in H, \rho(h)=i}{\times} \chi(h)$$

Pure Strategies Example

What are the pure strategies for player 2?

Pure Strategies Example

What are the pure strategies for player 2?

• $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$

Pure Strategies Example

What are the pure strategies for player 2? • $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$ What are the pure strategies for player 1?

Pure Strategies Example

What are the pure strategies for player 2?

• $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$

What are the pure strategies for player 1?

- $S_1 = \{(B,G); (B,H), (A,G), (A,H)\}$
- This is true even though, conditional on taking A, the choice between G and H will never have to be made_∂, <=, <=, =

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

Theorem

Every perfect information game in extensive form has a PSNE

This is easy to see, since the players move sequentially.

In fact, the connection to the normal form is even tighter
we can "convert" an extensive-form game into normal form

• In fact, the connection to the normal form is even tighter • we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
AH	3,8	3, 8	8,3	8,3
BG	5, 5	2, 10	5, 5	2, 10
BH	5, 5	1, 0	5, 5	1, 0

In fact, the connection to the normal form is even tighter
we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
4H	3,8	3, 8	8,3	8,3
BG	5, 5	2, 10	5, 5	2, 10
3H	5, 5	1,0	5, 5	1, 0

- this illustrates the lack of compactness of the normal form
 - games aren't always this small
 - even here we write down 16 payoff pairs instead of 5

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

- while we can write any extensive-form game as a NF, we can't do the reverse.
 - e.g., matching pennies cannot be written as a perfect-information extensive form game

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

• What are the (three) pure-strategy equilibria?

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
AH	3,8	3, 8	8,3	8, 3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1, 0

• What are the (three) pure-strategy equilibria?

•
$$(A, G), (C, F)$$

• $(A, H), (C, F)$

• (A, H), (C, F)• (B, H), (C, E)

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3, 8	8,3	8,3
AH	3,8	3, 8	8,3	8, 3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1, 0

• What are the (three) pure-strategy equilibria?

•
$$(A, G), (C, F)$$

• $(A, H), (C, F)$

• (A, H), (C, F)• (B, H), (C, E)

Lecture Overview

Perfect-Information Extensive-Form Games

2 Subgame Perfection

Lecture 7, Slide 10

< E

Extensive Form Games

Subgame Perfection

- There's something intuitively wrong with the equilibrium (B,H), (C,E)
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - After all, G dominates H for him

Subgame Perfection

- There's something intuitively wrong with the equilibrium (B,H), (C,E)
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - After all, G dominates H for him
 - He does it to threaten player 2, to prevent him from choosing ${\cal F},$ and so gets 5
 - However, this seems like a non-credible threat
 - If player 1 reached his second decision node, would he really follow through and play *H*?

Formal Definition

Definition (subgame of G rooted at h)

The subgame of G rooted at h is the restriction of G to the descendents of H

Definition (subgames of G)

The set of subgames of G is defined by the subgames of G rooted at each of the nodes in G.

- s is a subgame perfect equilibrium of G iff for any subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'
- Notes:
 - since G is its own subgame, every SPE is a NE.
 - this definition rules out "non-credible threats"

토 🕨 🗶 토 🕨 👘

- Which equilibria from the example are subgame perfect?
 - (A, G), (C, F):
 - (B, H), (C, E):
 - (A, H), (C, F):

- Which equilibria from the example are subgame perfect?
 - (A,G), (C,F): is subgame perfect
 - (B, H), (C, E):
 - (A, H), (C, F):

- Which equilibria from the example are subgame perfect?
 - (A,G), (C,F): is subgame perfect
 - (B, H), (C, E): (B, H) is an non-credible threat; not subgame perfect
 - (A, H), (C, F):

- Which equilibria from the example are subgame perfect?
 - (A,G), (C,F): is subgame perfect
 - (B, H), (C, E): (B, H) is an non-credible threat; not subgame perfect
 - (A, H), (C, F): (A, H) is also non-credible, even though H is "off-path"

Lecture Overview

Perfect-Information Extensive-Form Games

2 Subgame Perfection

Lecture 7, Slide 14

글 🖌 🖌 글

Extensive Form Games

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree function BACKWARDINDUCTION (node h) returns u(h)if $h \in Z$ then return u(h)best_util $\leftarrow -\infty$ forall $a \in \chi(h)$ do util $at_child \leftarrow BACKWARDINDUCTION(\sigma(h, a))$ if $util_at_child \leftarrow best_util_{\rho(h)}$ then $_ best_util \leftarrow util_at_child$

return best_util

- util_at_child is a vector denoting the utility for each player
- the procedure doesn't return an equilibrium strategy, but rather labels each node with a vector of real numbers.
 - This labeling can be seen as an extension of the game's utility function to the non-terminal nodes
 - The equilibrium strategies: take the best action at each node.

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree

```
 \begin{array}{l} \mbox{function BACKWARDINDUCTION (node $h$) returns $u(h)$} \\ \mbox{if $h \in Z$ then} \\ \mbox{lem: return $u(h)$} \\ \mbox{best\_util} \leftarrow -\infty \\ \mbox{forall $a \in \chi(h)$ do} \\ \mbox{lem: util\_at\_child} \leftarrow \mbox{BACKWARDINDUCTION}(\sigma(h,a)) \\ \mbox{if $util\_at\_child$} \leftarrow \mbox{best\_util$}_{\rho(h)$} > \mbox{best\_util$}_{\rho(h)$ then} \\ \mbox{lem: best\_util} \leftarrow \mbox{util\_at\_child$} \\ \mbox{return best\_util$} \end{aligned}
```

- For zero-sum games, BACKWARDINDUCTION has another name: the minimax algorithm.
 - Here it's enough to store one number per node.
 - It's possible to speed things up by pruning nodes that will never be reached in play: "alpha-beta pruning".

(日本) (日本) (日本)

```
function ALPHABETAPRUNING (node h, real \alpha, real \beta) returns u_1(h)
if h \in Z then
    return u_1(h)
                                                                            // h is a terminal node
best\_util \leftarrow (2\rho(h) - 3) \times \infty
                                                              // -\infty for player 1; \infty for player 2
forall a \in \chi(h) do
    if \rho(h) = 1 then
        best\_util \leftarrow \max(best\_util, AlphaBetaPruning(\sigma(h, a), \alpha, \beta))
if best\_util \ge \beta then
        return best_util
        \alpha \leftarrow \max(\alpha, best \ util)
    else
         best\_util \leftarrow \min(best\_util, ALPHABETAPRUNING(\sigma(h, a), \alpha, \beta))
        if best\_util \leq \alpha then
         ____ return best_util
         \beta \leftarrow \min(\beta, best\_util)
return best util
```