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Introduction

The normal form game representation does not incorporate
any notion of sequence, or time, of the actions of the players

The extensive form is an alternative representation that makes
the temporal structure explicit.

Two variants:

perfect information extensive-form games
imperfect-information extensive-form games
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Definition

A (finite) perfect-information game (in extensive form) is defined
by the tuple (N,A,H,Z, χ, ρ, σ, u), where:

Players: N is a set of n players

Actions: A

Choice nodes and labels for these nodes:

Choice nodes: H
Action function: χ : H → 2A

Player function: ρ : H → N

Terminal nodes: Z

Successor function: σ : H ×A→ H ∪ Z
Utility function: u = (u1, . . . , un); ui : Z → R
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Definition

A (finite) perfect-information game (in extensive form) is defined
by the tuple (N,A,H,Z, χ, ρ, σ, u), where:

Players: N

Actions: A is a (single) set of actions

Choice nodes and labels for these nodes:

Choice nodes: H
Action function: χ : H → 2A

Player function: ρ : H → N

Terminal nodes: Z

Successor function: σ : H ×A→ H ∪ Z
Utility function: u = (u1, . . . , un); ui : Z → R
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A (finite) perfect-information game (in extensive form) is defined
by the tuple (N,A,H,Z, χ, ρ, σ, u), where:

Players: N

Actions: A

Choice nodes and labels for these nodes:

Choice nodes: H is a set of non-terminal choice nodes

Action function: χ : H → 2A

Player function: ρ : H → N

Terminal nodes: Z

Successor function: σ : H ×A→ H ∪ Z
Utility function: u = (u1, . . . , un); ui : Z → R
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Definition

A (finite) perfect-information game (in extensive form) is defined
by the tuple (N,A,H,Z, χ, ρ, σ, u), where:

Players: N

Actions: A

Choice nodes and labels for these nodes:

Choice nodes: H
Action function: χ : H → 2A assigns to each choice node a set
of possible actions

Player function: ρ : H → N

Terminal nodes: Z

Successor function: σ : H ×A→ H ∪ Z
Utility function: u = (u1, . . . , un); ui : Z → R
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Definition

A (finite) perfect-information game (in extensive form) is defined
by the tuple (N,A,H,Z, χ, ρ, σ, u), where:

Players: N

Actions: A

Choice nodes and labels for these nodes:

Choice nodes: H
Action function: χ : H → 2A

Player function: ρ : H → N assigns to each non-terminal node
h a player i ∈ N who chooses an action at h

Terminal nodes: Z

Successor function: σ : H ×A→ H ∪ Z
Utility function: u = (u1, . . . , un); ui : Z → R
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Definition

A (finite) perfect-information game (in extensive form) is defined
by the tuple (N,A,H,Z, χ, ρ, σ, u), where:

Players: N

Actions: A

Choice nodes and labels for these nodes:

Choice nodes: H
Action function: χ : H → 2A

Player function: ρ : H → N

Terminal nodes: Z is a set of terminal nodes, disjoint from H

Successor function: σ : H ×A→ H ∪ Z
Utility function: u = (u1, . . . , un); ui : Z → R
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Perfect-Information Extensive-Form Games Subgame Perfection Backward Induction

Definition

A (finite) perfect-information game (in extensive form) is defined
by the tuple (N,A,H,Z, χ, ρ, σ, u), where:

Players: N

Actions: A
Choice nodes and labels for these nodes:

Choice nodes: H
Action function: χ : H → 2A

Player function: ρ : H → N

Terminal nodes: Z
Successor function: σ : H ×A→ H ∪ Z maps a choice node
and an action to a new choice node or terminal node such
that for all h1, h2 ∈ H and a1, a2 ∈ A, if
σ(h1, a1) = σ(h2, a2) then h1 = h2 and a1 = a2

The choice nodes form a tree, so we can identify a node with
its history.

Utility function: u = (u1, . . . , un); ui : Z → R
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Definition

A (finite) perfect-information game (in extensive form) is defined
by the tuple (N,A,H,Z, χ, ρ, σ, u), where:

Players: N

Actions: A

Choice nodes and labels for these nodes:

Choice nodes: H
Action function: χ : H → 2A

Player function: ρ : H → N

Terminal nodes: Z

Successor function: σ : H ×A→ H ∪ Z
Utility function: u = (u1, . . . , un); ui : Z → R is a utility
function for player i on the terminal nodes Z
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Example: the sharing game
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0–21–12–0

yesnoyesnoyesno

(0,2)(0,0)(1,1)(0,0)(2,0)(0,0)

Play as a fun game, dividing 100 dollar coins. (Play each partner
only once.)
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Pure Strategies

In the sharing game (splitting 2 coins) how many pure
strategies does each player have?

player 1: 3; player 2: 8

Overall, a pure strategy for a player in a perfect-information
game is a complete specification of which deterministic action
to take at every node belonging to that player.

Definition (pure strategies)

Let G = (N,A,H,Z, χ, ρ, σ, u) be a perfect-information
extensive-form game. Then the pure strategies of player i consist
of the cross product

×
h∈H,ρ(h)=i

χ(h)
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Pure Strategies

In the sharing game (splitting 2 coins) how many pure
strategies does each player have?

player 1: 3; player 2: 8

Overall, a pure strategy for a player in a perfect-information
game is a complete specification of which deterministic action
to take at every node belonging to that player.

Definition (pure strategies)

Let G = (N,A,H,Z, χ, ρ, σ, u) be a perfect-information
extensive-form game. Then the pure strategies of player i consist
of the cross product

×
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Pure Strategies Example

5.1 Perfect-information extensive-form games 109
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2–01–10–2

yesnoyesnoyesno

(0,2)(0,0)(1,1)(0,0)(2,0)(0,0)

Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.

1

22

1

(5,5)(8,3)(3,8)

(2,10) (1,0)

A B

C D E F

G H

Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are

Multi Agent Systems, draft of September 19, 2006

What are the pure strategies for player 2?

S2 = {(C,E); (C,F ); (D,E); (D,F )}
What are the pure strategies for player 1?

S1 = {(B,G); (B,H), (A,G), (A,H)}
This is true even though, conditional on taking A, the choice
between G and H will never have to be made

Extensive Form Games Lecture 7, Slide 7
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Pure Strategies Example

5.1 Perfect-information extensive-form games 109
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Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are

Multi Agent Systems, draft of September 19, 2006

What are the pure strategies for player 2?

S2 = {(C,E); (C,F ); (D,E); (D,F )}

What are the pure strategies for player 1?

S1 = {(B,G); (B,H), (A,G), (A,H)}
This is true even though, conditional on taking A, the choice
between G and H will never have to be made
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Pure Strategies Example

5.1 Perfect-information extensive-form games 109
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Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are

Multi Agent Systems, draft of September 19, 2006

What are the pure strategies for player 2?

S2 = {(C,E); (C,F ); (D,E); (D,F )}
What are the pure strategies for player 1?

S1 = {(B,G); (B,H), (A,G), (A,H)}
This is true even though, conditional on taking A, the choice
between G and H will never have to be made
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Pure Strategies Example
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Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are

Multi Agent Systems, draft of September 19, 2006

What are the pure strategies for player 2?

S2 = {(C,E); (C,F ); (D,E); (D,F )}
What are the pure strategies for player 1?

S1 = {(B,G); (B,H), (A,G), (A,H)}
This is true even though, conditional on taking A, the choice
between G and H will never have to be made
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Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our
old definitions of:

mixed strategies

best response

Nash equilibrium

Theorem

Every perfect information game in extensive form has a PSNE

This is easy to see, since the players move sequentially.
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Induced Normal Form

In fact, the connection to the normal form is even tighter

we can “convert” an extensive-form game into normal form

5.1 Perfect-information extensive-form games 109
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Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are

Multi Agent Systems, draft of September 19, 2006

CE CF DE DF
AG 3, 8 3, 8 8, 3 8, 3
AH 3, 8 3, 8 8, 3 8, 3
BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0
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In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are
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CE CF DE DF
AG 3, 8 3, 8 8, 3 8, 3
AH 3, 8 3, 8 8, 3 8, 3
BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0

this illustrates the lack of compactness of the normal form

games aren’t always this small
even here we write down 16 payoff pairs instead of 5
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Induced Normal Form

In fact, the connection to the normal form is even tighter
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
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CE CF DE DF
AG 3, 8 3, 8 8, 3 8, 3
AH 3, 8 3, 8 8, 3 8, 3
BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0

while we can write any extensive-form game as a NF, we can’t
do the reverse.

e.g., matching pennies cannot be written as a
perfect-information extensive form game
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Subgame Perfection
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Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are
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There’s something intuitively wrong with the equilibrium
(B,H), (C,E)

Why would player 1 ever choose to play H if he got to the
second choice node?

After all, G dominates H for him

He does it to threaten player 2, to prevent him from choosing
F , and so gets 5

However, this seems like a non-credible threat
If player 1 reached his second decision node, would he really
follow through and play H?
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It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are
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There’s something intuitively wrong with the equilibrium
(B,H), (C,E)

Why would player 1 ever choose to play H if he got to the
second choice node?

After all, G dominates H for him

He does it to threaten player 2, to prevent him from choosing
F , and so gets 5

However, this seems like a non-credible threat
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follow through and play H?
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Formal Definition

Definition (subgame of G rooted at h)

The subgame of G rooted at h is the restriction of G to the
descendents of H.

Definition (subgames of G)

The set of subgames of G is defined by the subgames of G rooted
at each of the nodes in G.

s is a subgame perfect equilibrium of G iff for any subgame
G′ of G, the restriction of s to G′ is a Nash equilibrium of G′

Notes:

since G is its own subgame, every SPE is a NE.
this definition rules out “non-credible threats”
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Which equilibria are subgame perfect?
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Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are
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Which equilibria from the example are subgame perfect?

(A,G), (C,F ):
(B,H), (C,E):
(A,H), (C,F ):
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In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
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Which equilibria from the example are subgame perfect?

(A,G), (C,F ): is subgame perfect
(B,H), (C,E):
(A,H), (C,F ):

Extensive Form Games Lecture 7, Slide 13



Perfect-Information Extensive-Form Games Subgame Perfection Backward Induction

Which equilibria are subgame perfect?

5.1 Perfect-information extensive-form games 109

q
qqq

qqqqqq

����������

HHHHHHHHHH
A
A
A
A
A

�
�

�
�

�

A
A
A
A
A

�
�
�

�
�

A
A
A
A
A

�
�

�
�

�

1

222

2–01–10–2

yesnoyesnoyesno

(0,2)(0,0)(1,1)(0,0)(2,0)(0,0)

Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.

1

22

1

(5,5)(8,3)(3,8)

(2,10) (1,0)

A B

C D E F

G H

Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
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S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
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Which equilibria from the example are subgame perfect?

(A,G), (C,F ): is subgame perfect
(B,H), (C,E): (B,H) is an non-credible threat; not subgame
perfect
(A,H), (C,F ):
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In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are
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Which equilibria from the example are subgame perfect?

(A,G), (C,F ): is subgame perfect
(B,H), (C,E): (B,H) is an non-credible threat; not subgame
perfect
(A,H), (C,F ): (A,H) is also non-credible, even though H is
“off-path”
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Lecture Overview

1 Perfect-Information Extensive-Form Games

2 Subgame Perfection

3 Backward Induction
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Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt
these as one moves up the tree

124 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

good news: not only are we guaranteed to find a subgame-perfect equilibrium (rather
than possibly finding a Nash equilibrium that involves non-credible threats) but also
this procedure is computationally simple. In particular, it can be implemented as a
single depth-first traversal of the game tree, and thus requires time linear in the size
of the game representation. Recall in contrast that the bestknown methods for finding
Nash equilibria of general games require time exponential in the size of the normal
form; remember as well that the induced normal form of an extensive-form game is
exponentially larger than the original representation.

function BACKWARD INDUCTION (nodeh) returns u(h)
if h ∈ Z then

return u(h) // h is a terminal node

best util← −∞
forall a ∈ χ(h) do

util at child←BACKWARD INDUCTION(σ(h, a))
if util at childρ(h) > best utilρ(h) then

best util← util at child

return best util

Figure 5.6: Procedure for finding the value of a sample (subgame-perfect) Nash equi-
librium of a perfect-information extensive-form game.

The algorithm BACKWARD INDUCTION is described in Figure 5.6. The variable
util at child is a vector denoting the utility for each player at the child node;util at childρ(h)
denotes the element of this vector corresponding to the utility for player ρ(h) (the
player who gets to move at nodeh). Similarly best util is a vector giving utilities for
each player.

Observe that this procedure does not return an equilibrium strategy for each of the
n players, but rather describes how to label each node with a vector ofn real numbers.
This labeling can be seen as an extension of the game’s utility function to the non-
terminal nodesH . The players’ equilibrium strategies follow straightforwardly from
this extended utility function: every time a given playeri has the opportunity to act
at a given nodeh ∈ H (that is,ρ(h) = i), that player will choose an actionai ∈
χ(h) that solvesargmaxai∈χ(h) ui(σ(ai, h)). These strategies can also be returned by
BACKWARD INDUCTION given some extra bookkeeping.

In general in this booklet we do not address computational issues, so this example
could be misleading without additional explanation. Whilethe procedure demonstrates
that in principle a sample SPE is effectively computable, inpractice the game trees
are never enumerated in advance and available for backward induction. For example,
the extensive-form representation of chess has around10150 nodes, which is vastly
too large to represent explicitly. For such games it is more common to discuss the
size of the game tree in terms of the average branching factorb (the average number
of actions which are possible at each node) and a maximum depth m (the maximum
number of sequential actions). A procedure which requires time linear in the size of
the representation thus expandsO(bm) nodes. Nevertheless, we can unfortunately do
no better than this on arbitrary perfect-information games.

c© Shoham and Leyton-Brown, 2008

util at child is a vector denoting the utility for each player

the procedure doesn’t return an equilibrium strategy, but rather
labels each node with a vector of real numbers.

This labeling can be seen as an extension of the game’s utility
function to the non-terminal nodes
The equilibrium strategies: take the best action at each node.
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of the game representation. Recall in contrast that the bestknown methods for finding
Nash equilibria of general games require time exponential in the size of the normal
form; remember as well that the induced normal form of an extensive-form game is
exponentially larger than the original representation.

function BACKWARD INDUCTION (nodeh) returns u(h)
if h ∈ Z then

return u(h) // h is a terminal node

best util← −∞
forall a ∈ χ(h) do

util at child←BACKWARD INDUCTION(σ(h, a))
if util at childρ(h) > best utilρ(h) then

best util← util at child

return best util

Figure 5.6: Procedure for finding the value of a sample (subgame-perfect) Nash equi-
librium of a perfect-information extensive-form game.

The algorithm BACKWARD INDUCTION is described in Figure 5.6. The variable
util at child is a vector denoting the utility for each player at the child node;util at childρ(h)
denotes the element of this vector corresponding to the utility for player ρ(h) (the
player who gets to move at nodeh). Similarly best util is a vector giving utilities for
each player.

Observe that this procedure does not return an equilibrium strategy for each of the
n players, but rather describes how to label each node with a vector ofn real numbers.
This labeling can be seen as an extension of the game’s utility function to the non-
terminal nodesH . The players’ equilibrium strategies follow straightforwardly from
this extended utility function: every time a given playeri has the opportunity to act
at a given nodeh ∈ H (that is,ρ(h) = i), that player will choose an actionai ∈
χ(h) that solvesargmaxai∈χ(h) ui(σ(ai, h)). These strategies can also be returned by
BACKWARD INDUCTION given some extra bookkeeping.

In general in this booklet we do not address computational issues, so this example
could be misleading without additional explanation. Whilethe procedure demonstrates
that in principle a sample SPE is effectively computable, inpractice the game trees
are never enumerated in advance and available for backward induction. For example,
the extensive-form representation of chess has around10150 nodes, which is vastly
too large to represent explicitly. For such games it is more common to discuss the
size of the game tree in terms of the average branching factorb (the average number
of actions which are possible at each node) and a maximum depth m (the maximum
number of sequential actions). A procedure which requires time linear in the size of
the representation thus expandsO(bm) nodes. Nevertheless, we can unfortunately do
no better than this on arbitrary perfect-information games.

c© Shoham and Leyton-Brown, 2008

For zero-sum games, BackwardInduction has another name:
the minimax algorithm.

Here it’s enough to store one number per node.
It’s possible to speed things up by pruning nodes that will
never be reached in play: “alpha-beta pruning”.
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function ALPHABETAPRUNING (nodeh, realα, realβ) returns u1(h)
if h ∈ Z then

return u1(h) // h is a terminal node

best_util← (2ρ(h) − 3)×∞ // −∞ for player 1;∞ for player 2
forall a ∈ χ(h) do

if ρ(h) = 1 then
best_util← max(best_util,ALPHABETAPRUNING(σ(h, a), α, β))
if best_util ≥ β then

return best_util
α← max(α, best_util)

else
best_util← min(best_util,ALPHABETAPRUNING(σ(h, a), α, β))
if best_util ≤ α then

return best_util
β ← min(β, best_util)

return best_util

Figure 5.7: The alpha-beta pruning algorithm. It is invoked at the root nodeh as
ALPHABETAPRUNING(h,−∞,∞).

previously encountered node that their corresponding player (player 1 forα and
player 2 forβ) would most prefer to chooseinsteadof h. For example, consider
the variableβ at some nodeh. Now consider all the different choices that player
2 could make at ancestors ofh that would preventh from ever being reached, and
that would ultimately lead to previously encountered terminal nodes.β is the best
value that player 2 could obtain at any of these terminal nodes. Because the players
do not have any alternative to starting at the root of the tree, at the beginning of the
searchα = −∞ andβ =∞.

We can now concentrate on the important difference between BACKWARD IN-
DUCTION and ALPHABETAPRUNING: in the latter procedure, the search can back-
track at a node that is not terminal. Let us think about things from the point of view
of player 1, who is considering what action to play at nodeh. (As we encourage
you to check for yourself, a similar argument holds when it is player 2’s turn to
move at nodeh.) For player 1, this backtracking occurs on the line that reads “if
best_util ≥ β then returnbest_util.” What is going on here? We have just ex-
plored some, but not all, of the children of player 1’s decision nodeh; the highest
value among these explored nodes isbest_util. The value of nodeh is therefore
lower bounded bybest_util (it is best_util if h has no children with larger values,
and is some larger amount otherwise). Either way, ifbest_util ≥ β then player
1 knows that player2 prefers choosing his best alternative (at some ancestor node
of h) rather than allowing player 1 to act at nodeh. Thus nodeh cannot be on
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