
Modal Logics for
Multi-Agent Systems

Valentin Goranko1 and Wojtek Jamroga2

1 University of the Witwatersrand, Johannesburg,
South Africa

2 Clausthal University of Technology, Germany

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 1

3. Logics of Action and Time

Section 3. Logics of Action and Time

Logics of Action and Time
3.1 Dynamic Logic
3.2 Temporal Logic
3.3 Linear Time Logic
3.4 Computation Tree Logic

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 108

3. Logics of Action and Time

Up to now:

Several operators Ki , each de�nes an
epistemic relation on worlds.

Description of static systems: no
possibility of change

But:

MAS are dynamic!

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 109

3. Logics of Action and Time

Up to now:

Several operators Ki , each de�nes an
epistemic relation on worlds.
Description of static systems: no
possibility of change

But:

MAS are dynamic!

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 110

3. Logics of Action and Time

Up to now:

Several operators Ki , each de�nes an
epistemic relation on worlds.
Description of static systems: no
possibility of change

But:

MAS are dynamic!

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 111

3. Logics of Action and Time 1. Dynamic Logic

3.1 Dynamic Logic

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 112

3. Logics of Action and Time 1. Dynamic Logic

1st idea: Consider actions or programs α. Each such
α de�nes a transition (accessibility relation)
from worlds into worlds.

2nd idea: We need statements about the outcome of
actions:

[α]ϕ: �after every execution of α,
ϕ holds,
〈α〉ϕ: �after some executions of α,
ϕ holds.

As usual, 〈α〉ϕ ≡ ¬[α]¬ϕ.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 113

3. Logics of Action and Time 1. Dynamic Logic

1st idea: Consider actions or programs α. Each such
α de�nes a transition (accessibility relation)
from worlds into worlds.

2nd idea: We need statements about the outcome of
actions:

[α]ϕ: �after every execution of α,
ϕ holds,
〈α〉ϕ: �after some executions of α,
ϕ holds.

As usual, 〈α〉ϕ ≡ ¬[α]¬ϕ.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 114

3. Logics of Action and Time 1. Dynamic Logic

1st idea: Consider actions or programs α. Each such
α de�nes a transition (accessibility relation)
from worlds into worlds.

2nd idea: We need statements about the outcome of
actions:

[α]ϕ: �after every execution of α,
ϕ holds,
〈α〉ϕ: �after some executions of α,
ϕ holds.

As usual, 〈α〉ϕ ≡ ¬[α]¬ϕ.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 115

3. Logics of Action and Time 1. Dynamic Logic

3rd idea: Programs/actions can be combined
(sequentially, nondeterministically,
iteratively), e.g.:

[α; β]ϕ

would mean �after every execution of α and
then β, formula ϕ holds�.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 116

3. Logics of Action and Time 1. Dynamic Logic

De�nition 3.1 (Labelled Transition System)

A labelled transition system is a pair

〈St, { α−→: α ∈ L}〉

where St is a non-empty set of states and L is a
non-empty set of labels and for each α ∈ L:

α−→⊆ St × St.

De�nition 3.2 (Dynamic Logic: Models)

A model of propositional dynamic logic is given by a
labelled transition systems and an evaluation of
propositions.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 117

3. Logics of Action and Time 1. Dynamic Logic

De�nition 3.1 (Labelled Transition System)

A labelled transition system is a pair

〈St, { α−→: α ∈ L}〉

where St is a non-empty set of states and L is a
non-empty set of labels and for each α ∈ L:

α−→⊆ St × St.

De�nition 3.2 (Dynamic Logic: Models)

A model of propositional dynamic logic is given by a
labelled transition systems and an evaluation of
propositions.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 118

3. Logics of Action and Time 1. Dynamic Logic

De�nition 3.3 (Semantics of DL)

M, s |= [α]ϕ i� for every t such that s α−→ t, we
have M, t |= ϕ.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 119

3. Logics of Action and Time 1. Dynamic Logic

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try]halt

start→ 〈try〉[wait]halt

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 120

3. Logics of Action and Time 1. Dynamic Logic

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try]halt

start→ 〈try〉[wait]halt

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 121

3. Logics of Action and Time 1. Dynamic Logic

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt

start→ ¬[try]halt
start→ 〈try〉[wait]halt

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 122

3. Logics of Action and Time 1. Dynamic Logic

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try]halt

start→ 〈try〉[wait]halt

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 123

3. Logics of Action and Time 1. Dynamic Logic

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try]halt

start→ 〈try〉[wait]halt

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 124

3. Logics of Action and Time 2. Temporal Logic

3.2 Temporal Logic

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 125

3. Logics of Action and Time 2. Temporal Logic

Ideas:

The accessibility relation can be seen as
representing time.
time: linear vs. branching

start

start

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 126

3. Logics of Action and Time 2. Temporal Logic

Ideas:

The accessibility relation can be seen as
representing time.
time: linear vs. branching

start

start

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 127

3. Logics of Action and Time 2. Temporal Logic

Typical temporal operators

Xϕ ϕ is true in the next moment in time
Gϕ ϕ is true in all future moments
Fϕ ϕ is true in some future moment
ϕUψ ϕ is true until the moment when ψ be-

comes true

G((¬passport ∨ ¬ticket) → X¬board_�ight)
send(msg, rcvr) → F receive(msg, rcvr)

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 128

3. Logics of Action and Time 2. Temporal Logic

Typical temporal operators

Xϕ ϕ is true in the next moment in time
Gϕ ϕ is true in all future moments
Fϕ ϕ is true in some future moment
ϕUψ ϕ is true until the moment when ψ be-

comes true

G((¬passport ∨ ¬ticket) → X¬board_�ight)
send(msg, rcvr) → F receive(msg, rcvr)

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 129

3. Logics of Action and Time 2. Temporal Logic

Typical temporal operators

Xϕ ϕ is true in the next moment in time
Gϕ ϕ is true in all future moments
Fϕ ϕ is true in some future moment
ϕUψ ϕ is true until the moment when ψ be-

comes true

G((¬passport ∨ ¬ticket) → X¬board_�ight)
send(msg, rcvr) → F receive(msg, rcvr)

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 130

3. Logics of Action and Time 2. Temporal Logic

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a
significant role in the formal specification and
verification of concurrent and distributed systems.

Much of this popularity has been achieved as a
number of useful concepts can be formally, and
concisely, specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 131

3. Logics of Action and Time 2. Temporal Logic

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a
significant role in the formal specification and
verification of concurrent and distributed systems.

Much of this popularity has been achieved as a
number of useful concepts can be formally, and
concisely, specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 132

3. Logics of Action and Time 2. Temporal Logic

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a
significant role in the formal specification and
verification of concurrent and distributed systems.

Much of this popularity has been achieved as a
number of useful concepts can be formally, and
concisely, specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 133

3. Logics of Action and Time 2. Temporal Logic

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a
significant role in the formal specification and
verification of concurrent and distributed systems.

Much of this popularity has been achieved as a
number of useful concepts can be formally, and
concisely, specified using temporal logics, e.g.

safety properties

liveness properties
fairness properties

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 134

3. Logics of Action and Time 2. Temporal Logic

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a
significant role in the formal specification and
verification of concurrent and distributed systems.

Much of this popularity has been achieved as a
number of useful concepts can be formally, and
concisely, specified using temporal logics, e.g.

safety properties
liveness properties

fairness properties

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 135

3. Logics of Action and Time 2. Temporal Logic

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a
significant role in the formal specification and
verification of concurrent and distributed systems.

Much of this popularity has been achieved as a
number of useful concepts can be formally, and
concisely, specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 136

3. Logics of Action and Time 2. Temporal Logic

Safety:
�something bad will not happen�
�something good will always hold�

Typical examples:

G¬bankrupt
G(fuelOK ∨ X fuelOK)
and so on . . .

Usually: G¬....

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 137

3. Logics of Action and Time 2. Temporal Logic

Safety:
�something bad will not happen�
�something good will always hold�

Typical examples:

G¬bankrupt
G(fuelOK ∨ X fuelOK)
and so on . . .

Usually: G¬....

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 138

3. Logics of Action and Time 2. Temporal Logic

Safety:
�something bad will not happen�
�something good will always hold�

Typical examples:

G¬bankrupt

G(fuelOK ∨ X fuelOK)
and so on . . .

Usually: G¬....

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 139

3. Logics of Action and Time 2. Temporal Logic

Safety:
�something bad will not happen�
�something good will always hold�

Typical examples:

G¬bankrupt
G(fuelOK ∨ X fuelOK)

and so on . . .

Usually: G¬....

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 140

3. Logics of Action and Time 2. Temporal Logic

Safety:
�something bad will not happen�
�something good will always hold�

Typical examples:

G¬bankrupt
G(fuelOK ∨ X fuelOK)

and so on . . .

Usually: G¬....

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 141

3. Logics of Action and Time 2. Temporal Logic

Safety:
�something bad will not happen�
�something good will always hold�

Typical examples:

G¬bankrupt
G(fuelOK ∨ X fuelOK)

and so on . . .

Usually: G¬....

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 142

3. Logics of Action and Time 2. Temporal Logic

Liveness:
�something good will happen�

Typical examples:

F rich

rocketLondon→ F rocketParis

and so on . . .

Usually: F

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 143

3. Logics of Action and Time 2. Temporal Logic

Liveness:
�something good will happen�

Typical examples:

F rich

rocketLondon→ F rocketParis

and so on . . .

Usually: F

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 144

3. Logics of Action and Time 2. Temporal Logic

Liveness:
�something good will happen�

Typical examples:

F rich

rocketLondon→ F rocketParis

and so on . . .

Usually: F

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 145

3. Logics of Action and Time 2. Temporal Logic

Liveness:
�something good will happen�

Typical examples:

F rich

rocketLondon→ F rocketParis

and so on . . .

Usually: F

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 146

3. Logics of Action and Time 2. Temporal Logic

Liveness:
�something good will happen�

Typical examples:

F rich

rocketLondon→ F rocketParis

and so on . . .

Usually: F

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 147

3. Logics of Action and Time 2. Temporal Logic

Liveness:
�something good will happen�

Typical examples:

F rich

rocketLondon→ F rocketParis

and so on . . .

Usually: F

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 148

3. Logics of Action and Time 2. Temporal Logic

Combinations of safety and liveness possible:

FGrocketParis
G(rocketLondon→ F rocketParis) fairness

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 149

3. Logics of Action and Time 2. Temporal Logic

Combinations of safety and liveness possible:

FGrocketParis
G(rocketLondon→ F rocketParis)

 fairness

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 150

3. Logics of Action and Time 2. Temporal Logic

Combinations of safety and liveness possible:

FGrocketParis
G(rocketLondon→ F rocketParis) fairness

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 151

3. Logics of Action and Time 2. Temporal Logic

Strong fairness
�if something is attempted/requested, then it
will be successful/allocated�

Typical examples:

G(attempt → Fsuccess)

GFattempt → GFsuccess

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 152

3. Logics of Action and Time 2. Temporal Logic

Strong fairness
�if something is attempted/requested, then it
will be successful/allocated�

Typical examples:

G(attempt → Fsuccess)

GFattempt → GFsuccess

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 153

3. Logics of Action and Time 2. Temporal Logic

Strong fairness
�if something is attempted/requested, then it
will be successful/allocated�

Typical examples:

G(attempt → Fsuccess)

GFattempt → GFsuccess

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 154

3. Logics of Action and Time 2. Temporal Logic

Fairness:

Useful when scheduling processes, responding to
messages, etc.

Good for specifying properties of the environment.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 155

3. Logics of Action and Time 3. Linear Time Logic

3.3 Linear Time Logic

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 156

3. Logics of Action and Time 3. Linear Time Logic

Linear Time: LTL

LTL: Linear Time Logic

Reasoning about a particular computation of a
system

Time is linear: just one possible future path is
included!

Models: paths

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 157

3. Logics of Action and Time 3. Linear Time Logic

Linear Time: LTL

LTL: Linear Time Logic

Reasoning about a particular computation of a
system

Time is linear: just one possible future path is
included!

Models: paths

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 158

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.4 (Models of LTL)

A model of LTL is a sequence of time moments. We
call such models paths, and denote them by λ.

Evaluation of atomic propositions at particular time
moments is also needed.

Notation:
λ[i]: ith time moment
λ[i . . . j]: all time moments between i and j
λ[i . . .∞]: all timepoints from i on

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 159

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.4 (Models of LTL)

A model of LTL is a sequence of time moments. We
call such models paths, and denote them by λ.

Evaluation of atomic propositions at particular time
moments is also needed.

Notation:
λ[i]: ith time moment
λ[i . . . j]: all time moments between i and j
λ[i . . .∞]: all timepoints from i on

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 160

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.4 (Models of LTL)

A model of LTL is a sequence of time moments. We
call such models paths, and denote them by λ.

Evaluation of atomic propositions at particular time
moments is also needed.

Notation:
λ[i]: ith time moment
λ[i . . . j]: all time moments between i and j
λ[i . . .∞]: all timepoints from i on

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 161

3. Logics of Action and Time 3. Linear Time Logic

Important: computational vs. behavioral structures

Computational Behavioral

q0 q1

roL roP

q0

q q0 0

q q q0 0 1

..
..

roL

roL

roP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 162

3. Logics of Action and Time 3. Linear Time Logic

Important: computational vs. behavioral structures

Computational

Behavioral

q0 q1

roL roP

q0

q q0 0

q q q0 0 1

..
..

roL

roL

roP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 163

3. Logics of Action and Time 3. Linear Time Logic

Important: computational vs. behavioral structures

Computational Behavioral

q0 q1

roL roP

q0

q q0 0

q q q0 0 1

..
..

roL

roL

roP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 164

3. Logics of Action and Time 3. Linear Time Logic

LTL models are de�ned as behavioral structures!

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 165

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.5 (Semantics of LTL)

λ |= p i� p is true at moment λ[0];

λ |= Xϕ i� λ[1..∞] |= ϕ;
λ |= Fϕ i� λ[i ..∞] |= ϕ for some i ≥ 0;
λ |= Gϕ i� λ[i ..∞] |= ϕ for all i ≥ 0;
λ |= ϕUψ i� λ[i ..∞] |= ψ for some i ≥ 0, and

λ[j ..∞] |= ϕ for all 0 ≤ j ≤ i .

Note that:
Gϕ ≡ ¬F¬ϕ
Fϕ ≡ ¬G¬ϕ
Fϕ ≡ >Uϕ

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 166

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.5 (Semantics of LTL)

λ |= p i� p is true at moment λ[0];
λ |= Xϕ i� λ[1..∞] |= ϕ;

λ |= Fϕ i� λ[i ..∞] |= ϕ for some i ≥ 0;
λ |= Gϕ i� λ[i ..∞] |= ϕ for all i ≥ 0;
λ |= ϕUψ i� λ[i ..∞] |= ψ for some i ≥ 0, and

λ[j ..∞] |= ϕ for all 0 ≤ j ≤ i .

Note that:
Gϕ ≡ ¬F¬ϕ
Fϕ ≡ ¬G¬ϕ
Fϕ ≡ >Uϕ

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 167

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.5 (Semantics of LTL)

λ |= p i� p is true at moment λ[0];
λ |= Xϕ i� λ[1..∞] |= ϕ;
λ |= Fϕ i� λ[i ..∞] |= ϕ for some i ≥ 0;

λ |= Gϕ i� λ[i ..∞] |= ϕ for all i ≥ 0;
λ |= ϕUψ i� λ[i ..∞] |= ψ for some i ≥ 0, and

λ[j ..∞] |= ϕ for all 0 ≤ j ≤ i .

Note that:
Gϕ ≡ ¬F¬ϕ
Fϕ ≡ ¬G¬ϕ
Fϕ ≡ >Uϕ

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 168

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.5 (Semantics of LTL)

λ |= p i� p is true at moment λ[0];
λ |= Xϕ i� λ[1..∞] |= ϕ;
λ |= Fϕ i� λ[i ..∞] |= ϕ for some i ≥ 0;
λ |= Gϕ i� λ[i ..∞] |= ϕ for all i ≥ 0;

λ |= ϕUψ i� λ[i ..∞] |= ψ for some i ≥ 0, and
λ[j ..∞] |= ϕ for all 0 ≤ j ≤ i .

Note that:
Gϕ ≡ ¬F¬ϕ
Fϕ ≡ ¬G¬ϕ
Fϕ ≡ >Uϕ

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 169

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.5 (Semantics of LTL)

λ |= p i� p is true at moment λ[0];
λ |= Xϕ i� λ[1..∞] |= ϕ;
λ |= Fϕ i� λ[i ..∞] |= ϕ for some i ≥ 0;
λ |= Gϕ i� λ[i ..∞] |= ϕ for all i ≥ 0;
λ |= ϕUψ i� λ[i ..∞] |= ψ for some i ≥ 0, and

λ[j ..∞] |= ϕ for all 0 ≤ j ≤ i .

Note that:
Gϕ ≡ ¬F¬ϕ
Fϕ ≡ ¬G¬ϕ
Fϕ ≡ >Uϕ

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 170

3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.5 (Semantics of LTL)

λ |= p i� p is true at moment λ[0];
λ |= Xϕ i� λ[1..∞] |= ϕ;
λ |= Fϕ i� λ[i ..∞] |= ϕ for some i ≥ 0;
λ |= Gϕ i� λ[i ..∞] |= ϕ for all i ≥ 0;
λ |= ϕUψ i� λ[i ..∞] |= ψ for some i ≥ 0, and

λ[j ..∞] |= ϕ for all 0 ≤ j ≤ i .

Note that:
Gϕ ≡ ¬F¬ϕ
Fϕ ≡ ¬G¬ϕ
Fϕ ≡ >Uϕ

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 171

3. Logics of Action and Time 4. Computation Tree Logic

3.4 Computation Tree Logic

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 172

3. Logics of Action and Time 4. Computation Tree Logic

Branching Time: CTL

CTL: Computation Tree Logic.
Reasoning about possible computations of a
system
Time is branching: we want all alternative paths
included!

Models: states (time points, situations), transitions
(changes)
Paths: courses of action, computations.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 173

3. Logics of Action and Time 4. Computation Tree Logic

Branching Time: CTL

CTL: Computation Tree Logic.
Reasoning about possible computations of a
system
Time is branching: we want all alternative paths
included!
Models: states (time points, situations), transitions
(changes)
Paths: courses of action, computations.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 174

3. Logics of Action and Time 4. Computation Tree Logic

Path quanti�ers: A (for all paths), E (there is a
path);
Temporal operators: X (nexttime), F (sometime),
G (always) and U (until);

�Vanilla� CTL: every temporal operator must be
immediately preceded by exactly one path
quanti�er;
CTL*: no syntactic restrictions;
Reasoning in �vanilla� CTL can be automatized.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 175

3. Logics of Action and Time 4. Computation Tree Logic

Path quanti�ers: A (for all paths), E (there is a
path);
Temporal operators: X (nexttime), F (sometime),
G (always) and U (until);

�Vanilla� CTL: every temporal operator must be
immediately preceded by exactly one path
quanti�er;
CTL*: no syntactic restrictions;

Reasoning in �vanilla� CTL can be automatized.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 176

3. Logics of Action and Time 4. Computation Tree Logic

Path quanti�ers: A (for all paths), E (there is a
path);
Temporal operators: X (nexttime), F (sometime),
G (always) and U (until);

�Vanilla� CTL: every temporal operator must be
immediately preceded by exactly one path
quanti�er;
CTL*: no syntactic restrictions;
Reasoning in �vanilla� CTL can be automatized.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 177

3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.6 (CTL models: transition systems)

A transition system is a pair

〈St,−→〉

where:

St is a non-empty set of states,

−→⊆ St × St is a transition relation.

Note that, formally, transition relation is just a modal
accessibility relation.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 178

3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.6 (CTL models: transition systems)

A transition system is a pair

〈St,−→〉

where:

St is a non-empty set of states,

−→⊆ St × St is a transition relation.

Note that, formally, transition relation is just a modal
accessibility relation.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 179

3. Logics of Action and Time 4. Computation Tree Logic

Important: computational vs. behavioral structures

Computational Behavioral

q0 q1

roL roP

q0

q q0 0 q q0 1

q q q0 1 0 q q q0 1 1q q q0 0 0 q q q0 0 1

....

roL

roL

roL

roL

roP

roProP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 180

3. Logics of Action and Time 4. Computation Tree Logic

Important: computational vs. behavioral structures

Computational

Behavioral

q0 q1

roL roP

q0

q q0 0 q q0 1

q q q0 1 0 q q q0 1 1q q q0 0 0 q q q0 0 1

....

roL

roL

roL

roL

roP

roProP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 181

3. Logics of Action and Time 4. Computation Tree Logic

Important: computational vs. behavioral structures

Computational Behavioral

q0 q1

roL roP

q0

q q0 0 q q0 1

q q q0 1 0 q q q0 1 1q q q0 0 0 q q q0 0 1

....

roL

roL

roL

roL

roP

roProP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 182

3. Logics of Action and Time 4. Computation Tree Logic

CTL models are de�ned as computational structures!

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 183

3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.7 (Paths in a model)

A path λ is an in�nite sequence of states that can be
e�ected by subsequent transitions.

A path must be full, i.e. either in�nite, or ending in a
state with no outgoing transition.

Usually, we assume that the transition relation is serial
(time �ows forever).
Then, all paths are in�nite.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 184

3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.7 (Paths in a model)

A path λ is an in�nite sequence of states that can be
e�ected by subsequent transitions.

A path must be full, i.e. either in�nite, or ending in a
state with no outgoing transition.

Usually, we assume that the transition relation is serial
(time �ows forever).

Then, all paths are in�nite.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 185

3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.7 (Paths in a model)

A path λ is an in�nite sequence of states that can be
e�ected by subsequent transitions.

A path must be full, i.e. either in�nite, or ending in a
state with no outgoing transition.

Usually, we assume that the transition relation is serial
(time �ows forever).
Then, all paths are in�nite.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 186

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

A rocket and a cargo,
The rocket can be moved between London
(proposition roL) and Paris (proposition roP),
The cargo can be in London (caL), Paris (caP),
or inside the rocket (caR),
The rocket can be moved only if it has its fuel
tank full (fuelOK),
When it moves, it consumes fuel, and nofuel holds
after each �ight.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 187

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

roL→ E♦roP

AG(roL ∨ roP)

roL→ AX (roP→ nofuel)

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 188

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

roL→ E♦roP

AG(roL ∨ roP)

roL→ AX (roP→ nofuel)

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 189

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

roL→ E♦roP

AG(roL ∨ roP)

roL→ AX (roP→ nofuel)

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 190

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

roL→ E♦roP

AG(roL ∨ roP)

roL→ AX (roP→ nofuel)

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 191

3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.8 (Semantics of CTL*: state formulae)

M, q |= Eϕ i� there is a path λ, starting from q,
such that M, λ |= ϕ;

M, q |= Aϕ i� for all paths λ, starting from q, we
have M, λ |= ϕ.

De�nition 3.9 (Semantics of CTL*: path formulae)

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 192

3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.8 (Semantics of CTL*: state formulae)

M, q |= Eϕ i� there is a path λ, starting from q,
such that M, λ |= ϕ;

M, q |= Aϕ i� for all paths λ, starting from q, we
have M, λ |= ϕ.

De�nition 3.9 (Semantics of CTL*: path formulae)

Exactly like for LTL!

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 193

3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.8 (Semantics of CTL*: state formulae)

M, q |= Eϕ i� there is a path λ, starting from q,
such that M, λ |= ϕ;

M, q |= Aϕ i� for all paths λ, starting from q, we
have M, λ |= ϕ.

De�nition 3.9 (Semantics of CTL*: path formulae)

M, λ |= Xϕ i� M, λ[1...∞] |= ϕ;
M, λ |= ϕUψ i� M, λ[i ...∞] |= ψ for some i ≥ 0,

and M, λ[j ...∞] |= ϕ for all 0 ≤ j ≤
i .

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 194

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 195

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 196

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 197

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 198

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 199

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 200

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 201

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 202

3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

3

E♦caP

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 203

3. Logics of Action and Time 4. Computation Tree Logic

Exercise:
How to express that there is no possibility of a
deadlock?

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 204

3. Logics of Action and Time 4. Computation Tree Logic

Practical Importance of Temporal and Dynamic Logics:
Automatic veri�cation in principle possible (model
checking).

Can be used for automated planning.
Executable speci�cations can be used for
programming.

Note:
When we combine time (actions) with knowledge
(beliefs, desires, intentions, obligations...), we �nally
obtain a fairly realistic model of MAS.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 205

3. Logics of Action and Time 4. Computation Tree Logic

Practical Importance of Temporal and Dynamic Logics:
Automatic veri�cation in principle possible (model
checking).
Can be used for automated planning.

Executable speci�cations can be used for
programming.

Note:
When we combine time (actions) with knowledge
(beliefs, desires, intentions, obligations...), we �nally
obtain a fairly realistic model of MAS.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 206

3. Logics of Action and Time 4. Computation Tree Logic

Practical Importance of Temporal and Dynamic Logics:
Automatic veri�cation in principle possible (model
checking).
Can be used for automated planning.
Executable speci�cations can be used for
programming.

Note:
When we combine time (actions) with knowledge
(beliefs, desires, intentions, obligations...), we �nally
obtain a fairly realistic model of MAS.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 207

3. Logics of Action and Time 4. Computation Tree Logic

Practical Importance of Temporal and Dynamic Logics:
Automatic veri�cation in principle possible (model
checking).
Can be used for automated planning.
Executable speci�cations can be used for
programming.

Note:
When we combine time (actions) with knowledge
(beliefs, desires, intentions, obligations...), we �nally
obtain a fairly realistic model of MAS.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 208

