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3. Logics of Action and Time

Up to now:

Several operators Ki , each de�nes an
epistemic relation on worlds.

Description of static systems: no
possibility of change

But:

MAS are dynamic!
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3. Logics of Action and Time 1. Dynamic Logic

3.1 Dynamic Logic
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3. Logics of Action and Time 1. Dynamic Logic

1st idea: Consider actions or programs α. Each such
α de�nes a transition (accessibility relation)
from worlds into worlds.

2nd idea: We need statements about the outcome of
actions:

[α]ϕ: �after every execution of α,
ϕ holds,
〈α〉ϕ: �after some executions of α,
ϕ holds.

As usual, 〈α〉ϕ ≡ ¬[α]¬ϕ.
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3. Logics of Action and Time 1. Dynamic Logic

3rd idea: Programs/actions can be combined
(sequentially, nondeterministically,
iteratively), e.g.:

[α; β]ϕ

would mean �after every execution of α and
then β, formula ϕ holds�.

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 116



3. Logics of Action and Time 1. Dynamic Logic

De�nition 3.1 (Labelled Transition System)

A labelled transition system is a pair

〈St, { α−→: α ∈ L}〉

where St is a non-empty set of states and L is a
non-empty set of labels and for each α ∈ L:

α−→⊆ St × St.

De�nition 3.2 (Dynamic Logic: Models)

A model of propositional dynamic logic is given by a
labelled transition systems and an evaluation of
propositions.
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3. Logics of Action and Time 1. Dynamic Logic

De�nition 3.3 (Semantics of DL)

M, s |= [α]ϕ i� for every t such that s α−→ t, we
have M, t |= ϕ.
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3. Logics of Action and Time 1. Dynamic Logic

q0 q1

haltstart

wait
try

wait

start→ 〈try〉halt
start→ ¬[try ]halt

start→ 〈try〉[wait]halt
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3. Logics of Action and Time 2. Temporal Logic

3.2 Temporal Logic
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3. Logics of Action and Time 2. Temporal Logic

Ideas:

The accessibility relation can be seen as
representing time.
time: linear vs. branching

start

start
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3. Logics of Action and Time 2. Temporal Logic

Typical temporal operators

Xϕ ϕ is true in the next moment in time
Gϕ ϕ is true in all future moments
Fϕ ϕ is true in some future moment
ϕUψ ϕ is true until the moment when ψ be-

comes true

G((¬passport ∨ ¬ticket) → X¬board_�ight)
send(msg, rcvr) → F receive(msg, rcvr)
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3. Logics of Action and Time 2. Temporal Logic

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a
significant role in the formal specification and
verification of concurrent and distributed systems.

Much of this popularity has been achieved as a
number of useful concepts can be formally, and
concisely, specified using temporal logics, e.g.

safety properties
liveness properties
fairness properties
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3. Logics of Action and Time 2. Temporal Logic

Safety:
�something bad will not happen�
�something good will always hold�

Typical examples:

G¬bankrupt
G(fuelOK ∨ X fuelOK)
and so on . . .

Usually: G¬....
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3. Logics of Action and Time 2. Temporal Logic

Liveness:
�something good will happen�

Typical examples:

F rich

rocketLondon→ F rocketParis

and so on . . .

Usually: F ....
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3. Logics of Action and Time 2. Temporal Logic

Combinations of safety and liveness possible:

FGrocketParis
G(rocketLondon→ F rocketParis)  fairness

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 149



3. Logics of Action and Time 2. Temporal Logic

Combinations of safety and liveness possible:

FGrocketParis
G(rocketLondon→ F rocketParis)

 fairness

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 150



3. Logics of Action and Time 2. Temporal Logic

Combinations of safety and liveness possible:

FGrocketParis
G(rocketLondon→ F rocketParis)  fairness

Valentin Goranko and Wojtek Jamroga · ESSLLI: Malaga 2006 151



3. Logics of Action and Time 2. Temporal Logic

Strong fairness
�if something is attempted/requested, then it
will be successful/allocated�

Typical examples:

G(attempt → Fsuccess)

GFattempt → GFsuccess
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3. Logics of Action and Time 2. Temporal Logic

Fairness:

Useful when scheduling processes, responding to
messages, etc.

Good for specifying properties of the environment.
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3. Logics of Action and Time 3. Linear Time Logic

3.3 Linear Time Logic
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3. Logics of Action and Time 3. Linear Time Logic

Linear Time: LTL

LTL: Linear Time Logic

Reasoning about a particular computation of a
system

Time is linear: just one possible future path is
included!

Models: paths
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3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.4 (Models of LTL)

A model of LTL is a sequence of time moments. We
call such models paths, and denote them by λ.

Evaluation of atomic propositions at particular time
moments is also needed.

Notation:
λ[i ]: ith time moment
λ[i . . . j]: all time moments between i and j
λ[i . . .∞]: all timepoints from i on
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3. Logics of Action and Time 3. Linear Time Logic

Important: computational vs. behavioral structures

Computational Behavioral

q0 q1

roL roP

q0

q q0 0

q q q0 0 1

..
..

roL

roL

roP
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3. Logics of Action and Time 3. Linear Time Logic

LTL models are de�ned as behavioral structures!
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3. Logics of Action and Time 3. Linear Time Logic

De�nition 3.5 (Semantics of LTL)

λ |= p i� p is true at moment λ[0];

λ |= Xϕ i� λ[1..∞] |= ϕ;
λ |= Fϕ i� λ[i ..∞] |= ϕ for some i ≥ 0;
λ |= Gϕ i� λ[i ..∞] |= ϕ for all i ≥ 0;
λ |= ϕUψ i� λ[i ..∞] |= ψ for some i ≥ 0, and

λ[j ..∞] |= ϕ for all 0 ≤ j ≤ i .

Note that:
Gϕ ≡ ¬F¬ϕ
Fϕ ≡ ¬G¬ϕ
Fϕ ≡ >Uϕ
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3. Logics of Action and Time 4. Computation Tree Logic

3.4 Computation Tree Logic
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3. Logics of Action and Time 4. Computation Tree Logic

Branching Time: CTL

CTL: Computation Tree Logic.
Reasoning about possible computations of a
system
Time is branching: we want all alternative paths
included!

Models: states (time points, situations), transitions
(changes)
Paths: courses of action, computations.
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3. Logics of Action and Time 4. Computation Tree Logic

Path quanti�ers: A (for all paths), E (there is a
path);
Temporal operators: X (nexttime), F (sometime),
G (always) and U (until);

�Vanilla� CTL: every temporal operator must be
immediately preceded by exactly one path
quanti�er;
CTL*: no syntactic restrictions;
Reasoning in �vanilla� CTL can be automatized.
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3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.6 (CTL models: transition systems)

A transition system is a pair

〈St,−→〉

where:

St is a non-empty set of states,

−→⊆ St × St is a transition relation.

Note that, formally, transition relation is just a modal
accessibility relation.
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−→⊆ St × St is a transition relation.

Note that, formally, transition relation is just a modal
accessibility relation.
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3. Logics of Action and Time 4. Computation Tree Logic

Important: computational vs. behavioral structures
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3. Logics of Action and Time 4. Computation Tree Logic

CTL models are de�ned as computational structures!
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3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.7 (Paths in a model)

A path λ is an in�nite sequence of states that can be
e�ected by subsequent transitions.

A path must be full, i.e. either in�nite, or ending in a
state with no outgoing transition.

Usually, we assume that the transition relation is serial
(time �ows forever).
Then, all paths are in�nite.
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3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo

A rocket and a cargo,
The rocket can be moved between London
(proposition roL ) and Paris (proposition roP ),
The cargo can be in London (caL ), Paris (caP ),
or inside the rocket (caR ),
The rocket can be moved only if it has its fuel
tank full (fuelOK ),
When it moves, it consumes fuel, and nofuel holds
after each �ight.
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3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo
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3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.8 (Semantics of CTL*: state formulae)

M, q |= Eϕ i� there is a path λ, starting from q,
such that M, λ |= ϕ;

M, q |= Aϕ i� for all paths λ, starting from q, we
have M, λ |= ϕ.

De�nition 3.9 (Semantics of CTL*: path formulae)
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De�nition 3.8 (Semantics of CTL*: state formulae)

M, q |= Eϕ i� there is a path λ, starting from q,
such that M, λ |= ϕ;

M, q |= Aϕ i� for all paths λ, starting from q, we
have M, λ |= ϕ.

De�nition 3.9 (Semantics of CTL*: path formulae)

Exactly like for LTL!
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3. Logics of Action and Time 4. Computation Tree Logic

De�nition 3.8 (Semantics of CTL*: state formulae)

M, q |= Eϕ i� there is a path λ, starting from q,
such that M, λ |= ϕ;

M, q |= Aϕ i� for all paths λ, starting from q, we
have M, λ |= ϕ.

De�nition 3.9 (Semantics of CTL*: path formulae)

M, λ |= Xϕ i� M, λ[1...∞] |= ϕ;
M, λ |= ϕUψ i� M, λ[i ...∞] |= ψ for some i ≥ 0,

and M, λ[j ...∞] |= ϕ for all 0 ≤ j ≤
i .
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3. Logics of Action and Time 4. Computation Tree Logic

Example: Rocket and Cargo
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3. Logics of Action and Time 4. Computation Tree Logic

Exercise:
How to express that there is no possibility of a
deadlock?
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3. Logics of Action and Time 4. Computation Tree Logic

Practical Importance of Temporal and Dynamic Logics:
Automatic veri�cation in principle possible (model
checking).

Can be used for automated planning.
Executable speci�cations can be used for
programming.

Note:
When we combine time (actions) with knowledge
(beliefs, desires, intentions, obligations...), we �nally
obtain a fairly realistic model of MAS.
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