

Modal Logics for Multi-Agent Systems Valentin Goranko¹ and Wojtek Jamroga²

¹ University of the Witwatersrand, Johannesburg, South Africa

² Clausthal University of Technology, Germany

Time:

.

31 July-4 August 2006, 17:00-18:30

Organization: Lectures 1, 3, 5, 8 & 10: Wojtek Jamroga, Lectures 2, 4, 6, 7, & 9: Valentin Goranko.

More course material, including updated notes, exercises, slides, and references will be placed on the course website:

http://www2.in.tu-clausthal.de/~wjamroga/courses/MAS2006ESSLLI/

Section 1. Agents and Logics

Agents and Logics

- 1.1 Agents
- 1.2 Logic for Agents
- 1.3 Modal Logic
- 1.4 Axioms for Modal Logics
- 1.5 Methodology
- 1.6 Logic for Agents ctd.

1.1 Agents

Valentin Goranko and Wojtek Jamroga -

- Multi-agent system (MAS): a system that involves several autonomous entities that act in the same environment
- The entities are called agents

- Multi-agent system (MAS): a system that involves several autonomous entities that act in the same environment
- The entities are called agents
- So, what is an agent precisely?

- Multi-agent system (MAS): a system that involves several autonomous entities that act in the same environment
- The entities are called agents
- So, what is an agent precisely?No commonly accepted definition

A new paradigm for computation

- A new paradigm for computation
- A new paradigm for design

- A new paradigm for computation
- A new paradigm for design
- A new paradigm for programming

- A new paradigm for computation
- A new paradigm for design
- A new paradigm for programming

Our claim:

MAS is a philosophical metaphor that induces a specific way of seeing the world.

We are agents!

¥.

We are agents!

The metaphor:

Makes us use specific vocabulary

We are agents!

The metaphor:

- Makes us use specific vocabulary
- Makes us use specific conceptual structures

We are agents!

The metaphor:

- Makes us use specific vocabulary
- Makes us use specific conceptual structures
- So:
- A new paradigm for thinking and talking about the world

An agents can/should possibly be:

An agents can/should possibly be:

 Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state

An agents can/should possibly be:

- Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state
- Reactive: reacts to changes in the environment

An agents can/should possibly be:

- Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state
- Reactive: reacts to changes in the environment
- Pro-active: takes the initiative

An agents can/should possibly be:

- Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state
- Reactive: reacts to changes in the environment
- Pro-active: takes the initiative
- Goal-directed: acts to achieve a goal

An agents can/should possibly be:

- Autonomous: operates without direct intervention of others, has some kind of control over its actions and internal state
- Reactive: reacts to changes in the environment
- Pro-active: takes the initiative
- Goal-directed: acts to achieve a goal
- Social: interacts with others (cooperation, communication, coordination, competition)

Embodied: has sensors and effectors to read from and make changes to the environment

Valentin Goranko and Wojtek Jamroga -

- Embodied: has sensors and effectors to read from and make changes to the environment
- Intelligent:

- Embodied: has sensors and effectors to read from and make changes to the environment
- Intelligent: ...whatever it means

Embodied: has sensors and effectors to read from and make changes to the environment
Intelligent: ...whatever it means
Rational: always does the right thing

mmonly acconted)

Is there any essential (and commonly accepted) feature of an agent?

An agent acts.

An agent acts.

Agents can be described mathematically by a function

act : set of percept sequences \mapsto set of actions

An agent acts.

Agents can be described mathematically by a function *act* : set of percept sequences → set of actions Note that, in game theory, such a function is called a strategy.

An agent acts.

Agents can be described mathematically by a function act : set of percept sequences \mapsto set of actions

Note that, in game theory, such a function is called a strategy.

In planning, it is called a conditional plan.

2. Logic for Agents

1.2 Logic for Agents

Valentin Goranko and Wojtek Jamroga -

Recall...

- Multi-agent systems:
 - A paradigm for thinking and talking about the world
 - Makes us use specific vocabulary
 - Makes us use specific conceptual structures
 - Provides methodology for design and programming

Recall...

- Multi-agent systems:
 - A paradigm for thinking and talking about the world
 - Makes us use specific vocabulary
 - Makes us use specific conceptual structures
 - Provides methodology for design and programming
- This view of MAS comes close to the role of logic in both philosophy and computer science!

Logic:

A paradigm for modeling and reasoning about the world in a precise manner

Logic:

- A paradigm for modeling and reasoning about the world in a precise manner
- Provides vocabulary and conceptual structures

Logic:

- A paradigm for modeling and reasoning about the world in a precise manner
- Provides vocabulary and conceptual structures
- Provides methodology for specification and verification

Logic:

- A paradigm for modeling and reasoning about the world in a precise manner
- Provides vocabulary and conceptual structures
- Provides methodology for specification and verification
- Can be used for practical things (also in MAS):

Logic:

- A paradigm for modeling and reasoning about the world in a precise manner
- Provides vocabulary and conceptual structures
- Provides methodology for specification and verification
- Can be used for practical things (also in MAS): automatic verification
 - executable specifications
 - planning as model checking

Logic and MAS can be a good match.

1.3 Modal Logic

Modal logic is an extension of classical logic by new connectives \Box and \Diamond : necessity and possibility.

Modal logic is an extension of classical logic by new connectives \Box and \Diamond : necessity and possibility.

 $\blacksquare \Box \varphi$ means that φ is necessarily true

Modal logic is an extension of classical logic by new connectives \Box and \Diamond : necessity and possibility.

□φ means that φ is necessarily true
 ◊φ means that φ is possibly true

Modal logic is an extension of classical logic by new connectives \Box and \Diamond : necessity and possibility.

• $\Box \varphi$ means that φ is necessarily true • $\Diamond \varphi$ means that φ is possibly true

Independently of the precise definition, the following holds:

 $\mathbf{r}\varphi\leftrightarrow\neg\Box\neg\varphi$

Definition 1.1 (Modal Logic with *n* **modalities)**

The language of modal logic with n modal operators \Box_1, \ldots, \Box_n is the smallest set containing:

- **a**tomic propositions p, q, r, \ldots ;
- for formulae φ , it also contains $\neg \varphi, \Box_1 \varphi, \ldots, \Box_n \varphi$;
- for formulae φ, ψ , it also contains $\varphi \wedge \psi$.

We treat $\lor, \rightarrow, \leftrightarrow, \diamondsuit$ as macros (defined as usual).

Definition 1.1 (Modal Logic with n modalities)

The language of modal logic with n modal operators \Box_1, \ldots, \Box_n is the smallest set containing:

- **a**tomic propositions p, q, r, \ldots ;
- for formulae φ , it also contains $\neg \varphi, \Box_1 \varphi, \ldots, \Box_n \varphi$;
- for formulae φ, ψ , it also contains $\varphi \wedge \psi$.

We treat $\lor, \rightarrow, \leftrightarrow, \diamondsuit$ as macros (defined as usual).

Note that the modal operators can be nested:

 $(\Box_1\Box_2 \diamond_1 p) \vee \Box_3 \neg p$

More precisely, necessity/possibility is interpreted as follows:

- **p** is necessary \Leftrightarrow *p* is true in all possible scenarios
- p is possible ⇔ p is true in at least one possible scenario

More precisely, necessity/possibility is interpreted as follows:

p is necessary \Leftrightarrow *p* is true in all possible scenarios *p* is possible \Leftrightarrow *p* is true in at least one possible

 \rightarrow possible worlds semantics

scenario

Definition 1.2 (Kripke Structure)

A Kripke structure is a tuple $\langle \mathcal{W}, \mathcal{R} \rangle$, where \mathcal{W} is a set of possible worlds, and \mathcal{R} is a binary relation on worlds, called accessibility relation.

Definition 1.2 (Kripke Structure)

A Kripke structure is a tuple $\langle \mathcal{W}, \mathcal{R} \rangle$, where \mathcal{W} is a set of possible worlds, and $\mathcal R$ is a binary relation on worlds, called accessibility relation.

Definition 1.3 (Kripke model)

A possible worlds model $\mathcal{M} = \langle \mathcal{S}, \pi \rangle$ consists of a Kripke structure \mathcal{S}_{i} , and a valuation of propositions $\pi: \mathcal{W} \to \mathcal{P}(\{p, q, r, \ldots\}).$

Remarks:

■ *R* indicates which worlds are relevant for each other; w₁*R*w₂ can be read as "world w₂ is relevant for (reachable from) world w₁"

Remarks:

- *R* indicates which worlds are relevant for each other; *w*₁*Rw*₂ can be read as "world *w*₂ is relevant for (reachable from) world *w*₁"
- *R* can be any binary relation from *W* × *W*; we do not require any specific properties (yet).

Remarks:

- *R* indicates which worlds are relevant for each other; *w*₁*Rw*₂ can be read as "world *w*₂ is relevant for (reachable from) world *w*₁"
- R can be any binary relation from W × W; we do not require any specific properties (yet).
- It is natural to see the worlds from W as classical propositional models, i.e. valuations of propositions π(w) ⊆ {p, q, r, ...}.

Definition 1.4 (Semantics of modal logic)

The truth of formulae is relative to a Kripke model $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$, and a world $w \in \mathcal{W}$. It can be defined through the following clauses:

• $\mathcal{M}, w \models p \text{ iff } p \in \pi(w);$

•
$$\mathcal{M}, w \models p \text{ iff } p \in \pi(w);$$

$$\blacksquare \mathcal{M}, w \models \neg \varphi \text{ iff not } \mathcal{M}, w \models \varphi;$$

•
$$\mathcal{M}, w \models p \text{ iff } p \in \pi(w);$$

• $\mathcal{M}, w \models \neg \varphi \text{ iff not } \mathcal{M}, w \models \varphi;$
• $\mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi$

 $run \rightarrow \diamondsuit stop$ stop $\rightarrow \Box stop$

 $run \rightarrow \diamondsuit stop$ stop $\rightarrow \Box stop$ run $\rightarrow \diamondsuit \Box stop$

Note:

 Most modal logics can be translated to classical logic

Note:

- Most modal logics can be translated to classical logic
- but the result looks horribly ugly

Note:

- Most modal logics can be translated to classical logic
- but the result looks horribly ugly,
- automatize anything

1.4 Axioms for Modal Logics

As in classical logic, one can ask about a complete axiom system. Is there a calculus that allows to derive all sentences that are true in all Kripke models?

As in classical logic, one can ask about a complete axiom system. Is there a calculus that allows to derive all sentences that are true in all Kripke models?

Definition 1.5 (System K)

System \mathbf{K} is an extension of the propositional calculus by the axiom

$$\bigstar \ (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$$

and the inference rule

(Necessitation)
$$\frac{\varphi}{\Box \varphi}$$
.

Theorem 1.6 (Soundness/completeness of system K)

System **K** is sound and complete with respect to the class of all Kripke models.

Theorem 1.6 (Soundness/completeness of system K)

System **K** is sound and complete with respect to the class of all Kripke models.

Note: with *n* modalities, the calculus is called K_n , and the theorem extends in a straightforward way.

Definition 1.7 (Extending K with axioms D, T, 4, 5)

System K is often extended by (a subset of) the following axioms (called as below for historical reasons):

Definition 1.7 (Extending K with axioms D, T, 4, 5)

System \mathbf{K} is often extended by (a subset of) the following axioms (called as below for historical reasons):

$$\mathsf{K} \ (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$$

System **K** is often extended by (a subset of) the following axioms (called as below for historical reasons):

> $\mathsf{K} \ (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$ **D** $\neg \Box (\varphi \land \neg \varphi)$

System **K** is often extended by (a subset of) the following axioms (called as below for historical reasons):

> $\mathsf{K} \ (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$ **D** $\neg \Box (\varphi \land \neg \varphi)$ **T** $\Box \varphi \rightarrow \varphi$

System **K** is often extended by (a subset of) the following axioms (called as below for historical reasons):

> $\mathsf{K} \ (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$ **D** $\neg \Box (\varphi \land \neg \varphi)$ **T** $\Box \varphi \rightarrow \varphi$ 4 $\Box \varphi \rightarrow \Box \Box \varphi$

System **K** is often extended by (a subset of) the following axioms (called as below for historical reasons):

> $\mathsf{K} \ (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$ **D** $\neg \Box (\varphi \land \neg \varphi)$ **T** $\Box \varphi \rightarrow \varphi$ 4 $\Box \varphi \rightarrow \Box \Box \varphi$ **5** $\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$

Best known extensions of system \mathbf{K} :

- **S5** = **KDT45**: the standard logic of knowledge
- **KD45**: the standard logic of beliefs

Theorem 1.8 (Sound/complete subsystems of KDT45)

Let **X** be any subset of $\{D, T, 4, 5\}$ and let \mathcal{X} be any subset of $\{\text{serial}, \text{reflexive}, \text{transitive}, \text{euclidean}\}\$ corresponding to **X**.

Then $\mathbf{K} \cup \mathbf{X}$ is sound and complete with respect to Kripke models the accessibility relation of which satisfies \mathcal{X} .

Theorem 1.8 (Sound/complete subsystems of KDT45)

Let **X** be any subset of $\{D, T, 4, 5\}$ and let \mathcal{X} be any subset of $\{\text{serial}, \text{reflexive}, \text{transitive}, \text{euclidean}\}\$ corresponding to **X**.

Then $\mathbf{K} \cup \mathbf{X}$ is sound and complete with respect to Kripke models the accessibility relation of which satisfies \mathcal{X} .

Corollary 1.9

System **S5** is sound and complete with respect to Kripke models with equivalence accessibility relations.

Exercise

Show that

Axiom **D** follows from **KT45**.

KD45 is not equivalent to K45: axiom D does not follow from K45.

When is a formula true?

When is a formula true?

• φ can be true in \mathcal{M} and q $(\mathcal{M},q\models\varphi)$

When is a formula true?

• φ can be true in \mathcal{M} and q ($\mathcal{M}, q \models \varphi$) • φ can be valid in \mathcal{M} ($\mathcal{M}, q \models \varphi$ for all q)

When is a formula true?

φ can be true in M and q (M, q ⊨ φ)
φ can be valid in M (M, q ⊨ φ for all q)
φ can be valid (M, q ⊨ φ for all M, q)

When is a formula true?

φ can be true in M and q (M, q ⊨ φ)
φ can be valid in M (M, q ⊨ φ for all q)
φ can be valid (M, q ⊨ φ for all M, q)
φ can be satisfiable (M, q ⊨ φ for some M, q)

When is a formula true?

- **•** arphi can be true in $\mathcal M$ and q $(\mathcal M,q\modelsarphi)$
- φ can be valid in \mathcal{M} ($\mathcal{M}, q \models \varphi$ for all q)
- lacksquare arphi can be valid $(\mathcal{M},q\models arphi$ for all $\mathcal{M},q)$
- φ can be satisfiable $(\mathcal{M},q\models \varphi$ for some $\mathcal{M},q)$
- φ can be a theorem (it can be derived from the axioms via inference rules)

 $Methodology \rightleftharpoons Problems...$

Methodology \rightleftharpoons Problems... in a positive sense

Methodology \rightleftharpoons Problems... in a positive sense = questions that can be asked with logic:

■ model checking (local): "given *M*, *q*, and *\varphi*, is *\varphi* true in *M*, *q*?"

- model checking (local): "given *M*, *q*, and *\varphi*, is *\varphi* true in *M*, *q*?"
- model checking (global): "given *M* and *\varphi*, what is the set of states in which *\varphi* is true?"

- model checking (local): "given *M*, *q*, and *\varphi*, is *\varphi* true in *M*, *q*?"
- model checking (global): "given *M* and *\varphi*, what is the set of states in which *\varphi* is true?"
- satisfiability: "given φ, is φ true in at least one model and state?"

- model checking (local): "given *M*, *q*, and *\varphi*, is *\varphi* true in *M*, *q*?"
- model checking (global): "given *M* and *\varphi*, what is the set of states in which *\varphi* is true?"
- satisfiability: "given \u03c6, is \u03c6 true in at least one model and state?"
- validity: "given φ, is φ true in all models and their states?"

- model checking (local): "given *M*, *q*, and *\varphi*, is *\varphi* true in *M*, *q*?"
- model checking (global): "given *M* and *\varphi*, what is the set of states in which *\varphi* is true?"
- satisfiability: "given φ, is φ true in at least one model and state?"
- validity: "given φ, is φ true in all models and their states?"
- theorem proving: "given \u03c6, is it possible to prove (derive) \u03c6?"

1.6 Logic for Agents ctd.

Various modal logics:

■ knowledge ~→ epistemic logic,

- knowledge ~→ epistemic logic,
- beliefs \rightsquigarrow doxastic logic,

- knowledge ~→ epistemic logic,
- beliefs ~→ doxastic logic,
- obligations ~→ deontic logic,

- knowledge ~→ epistemic logic,
- \blacksquare beliefs \rightsquigarrow doxastic logic,
- obligations ~→ deontic logic,
- actions ~→ dynamic logic,

- knowledge ~→ epistemic logic,
- \blacksquare beliefs \rightsquigarrow doxastic logic,
- obligations ~→ deontic logic,
- actions ~→ dynamic logic,
- time ~→ temporal logic,

- knowledge ~→ epistemic logic,
- \blacksquare beliefs \rightsquigarrow doxastic logic,
- obligations ~→ deontic logic,
- actions ~→ dynamic logic,
- time ~→ temporal logic,
- ability ~→ strategic logic,

- knowledge ~→ epistemic logic,
- beliefs ~→ doxastic logic,
- obligations ~→ deontic logic,
- actions ~→ dynamic logic,
- time ~→ temporal logic,
- ability ~→ strategic logic,
- and combinations of the above

Modal logic seems very well suited for reasoning about various dimensions of multi-agent systems!

Modal logic seems very well suited for reasoning about various dimensions of multi-agent systems!

Modal logic and MAS are a good match!

Valentin Goranko and Wojtek Jamroga -

ESSLLI: Malaga 2006 106