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Introduction

Cognitive agents revisited

.
cognitive/knowledge intensive agent
..

.

. ..

.

.

employ cognitive processes, such as knowledge representation
and reasoning as the basis for decision making and action
selection. I.e., they construct and maintain a mental state.

.
mental state
..

.

. ..

.

.

agent’s internal explicit representation of the environment,
itself, its peers, etc. ⇝ agent’s memory
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Introduction

The problem

How to build systems involving mentallistic concepts?

What are the general principles and guidelines to follow?

Why building such systems matters?

What are the main problems we face when building such
systems?

What is the state-of-the-art in this field?
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Motivation & basic concepts

Agent engineering

HW

run-time system

agent-oriented prog. languages

design languages

development methodologies
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Motivation & basic concepts

Why “agent-oriented”?
Embodied agents in dynamic & unstructured environments!

social⇝ communication⇝ language⇝ knowledge
representation, reasoning
autonomy⇝ decision making, robust & modular
implementation
proactive⇝ opportunistic⇝ non-deterministic, parallel
reactive⇝ interruptible

.
traditional approaches perform poorly in such contexts
..

.

. ..

.

.

1 interruptions & reactivity⇝ exceptions vs. context restore

2 non-determinism vs. structure⇝ declarative languages (?)

3 modularity vs. the above⇝ elaboration tolerance,
compositionality

4 parallelism vs. the above⇝ separation vs. interactions

5 KR&R⇝ logic-based approaches
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Motivation & basic concepts

AO software engineering
.
..

.

. ..

.

.

Highly parallel non-deterministic interruptible behaviours relying
on relatively heavy weight knowledge representation and
reasoning.

How to model systems in terms of mentalistic concepts?

knowledge, beliefs

goals

obligations

plans

roles

speech-acts

What is the right methodology?

How to analyse systems?
How to design systems?
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Motivation & basic concepts

AO programming languages
.
..

.

. ..

.

.

Highly parallel non-deterministic interruptible behaviours relying
on relatively heavy weight knowledge representation and
reasoning.

What is the computational model we should employ for building
non-deterministic, parallel and interruptible systems?

plan encoding

plan instantiation

plan execution

monitoring

replanning

failure handling

reasoning

integration

What is the system semantics?

how to: design⇝ implement⇝ execute?
How to verify?
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Agent-oriented software engineering
IntroductionWhat is AOSE?

methods and tools for supporting development of agent
and multi-agent systems oriented software engineering

modelling languages for the specification of MAS

techniques for requirements elicitation and analysis

architectures and methods for designing agents and their
organizations

platforms for implementation and deployment of MAS

validation and verification methods
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Agent-oriented software engineering
FrameworksAOSE frameworks

Modelling frameworks:

Tropos

MaSE

AUML

AML

. . .

Methodologies:

Tropos

Gaia

Prometheus

MaSE

. . .

Special purpose methodologies & modelling tools directed
towards:

emergent systems

mobile agents

swarm intelligence
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Agent-oriented software engineering
Tropos methodologyTropos: overview

.

..

.

. ..

.

.

Tropos is an agent-oriented software engineering (AOSE)
methodology that covers the whole software development
process.

requirements ­driven software development approach⇝
exploits goal analysis and actor dependencies analysis

covers also the very early phases of requirements analysis⇝
deeper understanding of the environment & interactions
between software and human agents

spans from early analysis down to agent-oriented
programming languages issues

uses mentalistic notions (agent, role, goals, plans, etc.) ⇝
from early analysis down to the actual implementation.
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Agent-oriented software engineering
Tropos methodologyTropos language

Basic concepts:

Actor

intentional entity: role, position, agent (human or software)
agent is an actor which occupies a position covering (several)
roles played by the agent

Goal

strategic interest of an actor
is associated to an actor.

hard : clear satisfaction criteria
soft : qualitative “soft” criteria

Task

a course of action (plan/process) associated with a goal and
used to satisfy it by execution
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Agent-oriented software engineering
Tropos methodologyTropos language (cont.)

Basic concepts (cont.):

Resource

physical, or informative non-intentional entity
can be used, produced, or shared

Social dependency (between two actors)

one actor depends on another to accomplish a goal, execute
a task, or deliver a resource
the content can be a goal/task/resource
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Agent-oriented software engineering
Tropos methodologyTropos language (cont.)

Basic relations between entities:
Decomposition

AND decomposition
OR decomposition
goal⇝ subgoals
task⇝ subtasks

Means-ends
a task (mean) used to achieve a goal (end)

Contribution
a goal/task/softgoal contributes to the satisfaction of a
softgoal

Resource need
a task/goal needs a resource

Resource production
a task/goal produces a resource
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Agent-oriented software engineering
Tropos methodologyExample model
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Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1 Early requirements (social domain)

socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified

2 Late requirements (system in the domain)
the system is introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts

3 Architectural design (analysis/decomposition)
the actor system is designed
subactors are introduced and goals/task are assigned
agents are identified
agent capabilities are identified

4 Detailed design (detailed design)
capabilities, protocols, and agentʼs tasks/plan are specified in
detail
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Agent-oriented software engineering
Formal specification of agentsTemporal & epistemic logics recap.

Capture the properties of an agent system:

1 evolution of the system in time

2 structure and component relationships of the internal state

beliefs, desires, intentions, obligations, commitments, etc.

.

evolution of beliefs, desires, etc. in time
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Agent-oriented software engineering
Formal specification of agentsLogics and SW engineering

.
Role of logics in software engineering
..

.

. ..

.

.

Temporal & epistemic logics provide means to capture important
fragments of system specification and lifecycle.

the system eventually achieves,
resp. always maintains goals (3, 2)

perceiving a sensor in the next step
leads to belief update ( h)
upon holding a belief, a goal should
be adopted, resp. dropped ( h)
a goal sometimes, resp. always
triggers a behavior (3,2 h)
behaviors eventually lead to
fulfillment of goals (3)

goals

functional requirements

beliefs

sensors

behaviors

actuators
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Agent-oriented software engineering
Formal specification of agentsModeling goals: achievement

G3φ −→ 3Bφ

G3φU Bφ

.
ACHIEVEMENT-GOAL:
..

.

. ..

.

.

Bφadopt ∧ ¬G3φ −→ G⊕ 3φ

G3φ ∧ Bφdrop −→ G⊖ 3φ

G3φ ∧ Bφ −→ G⊖ 3φ

G3φ −→ E⊘ behaviorφ
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Agent-oriented software engineering
Formal specification of agentsModeling goals: maintenance

G2φ ∧ B¬φ −→ 32Bφ

.
MAINTENANCE-GOAL:
..

.

. ..

.

.

Bφadopt ∧ ¬G2φ −→ G⊕ 2φ

G2φ ∧ Bφdrop −→ G⊖ 2φ

G2φ ∧ ¬Bφ −→ E⊘ behaviorφ
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Agent-oriented software engineering
Formal specification of agentsSpecification & verification

specification φ vs. programP

φ

P
decomposition

φ

P vs. φ

verification

decomposition/refinement⇝ agent-oriented programming
verification⇝model checking

model checkers:

LTL: e.g., SPIN, etc.

CTL/CTL*: e.g., NuSMV, UPAAL, etc.
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Agent-oriented programming

A4M33MAS/Lecture #4

Agent-oriented programming
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Agent-oriented programming
IntroductionGoal-oriented agents

Agent

E
n
v
iro

n
m
e
n
t

Sensors

What it will be like
  if I do action A

What action I
should do now

State

How the world evolves

What my actions do

Goals

Actuators

What the world
is like now

goals + state + actions’ consequences⇝
action selection
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Agent-oriented programming
IntroductionStructure of cognitive agents

goalsbeliefs

action selection
actionsperceptions

mental state

beliefs a database of agent’s information about itself, the
world (environment), other agents, etc.
⇝ NOW

goals description of states the agent “wants” to bring
about
⇝ FUTURE

How to select actions leading
from NOW to the FUTURE ?

⇝ Planning!!!
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Agent-oriented programming
IntroductionPlanning

.
Definition (planning)
..

.

. ..

.

.

... is the process of generating (possibly partial) representations
of future behavior prior to the use of such plans to constrain or
control that behavior. The outcome is usually a set of actions,
with temporal and other constraints on them, for execution by
some agent or agents.

(The MIT Encyclopedia of the Cognitive Sciences)

.
plan - execute - monitor cycle
..

.

. ..

.

.

1 plan from the current state to a goal state(s)

2 sequentially execute actions from the plan

3 monitor success of action execution

in the case of action failure, (re-)plan again (goto 1)
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Agent-oriented programming
IntroductionThe issue with planning

to arrive to a valid plan, in the worst case, the planner has to
explore all the possible action sequences!!!

⇝ high computational complexity (≈PSPACE) /

speed of planning vs. environment dynamics

planning
speed
≻ environment can perform relatively well

planning
speed
≺ environment can lead to fatal inefficiencies

⇝ the system “suffocates” in (re-)planning
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Agent-oriented programming
IntroductionA way out: reactive planning & BDI

Structural decomposition:
(B)eliefs: agent’s static information about the world
(D)esires: situations the agent wants to bring about
(I)ntentions: courses of action, plans

System dynamics:
reactive planning: instead of plan-execute-monitor cycle,
select partial plans reactively on the ground of the current
state of the world, beliefs and goals

desires

beliefs

intentions

plans

interpreter
actionsperceptions
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Agent-oriented programming
Agent programming languages

Agent-oriented programming

.
Agent-oriented programming
..

.

. ..

.

.

Promotes programming with mentalistic notions and intentional
stance as an abstraction. Provides a realization of the BDI agent
architecture in pragmatic programming languages.

AOP system:

1 a logical system formental states

2 an interpreted programming language

3 an ‘agentification’ process
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Agent-oriented programming
Agent programming languagesWhat can APLs do for us?

1 mentalistic abstractions for agent system specification

beliefs, desires, intentions, plans, practical reasoning rules,
etc.,
operationalization of the BDI architecture
tools for encoding the system dynamics

2 agent-oriented language semantics

syntax & model of execution
loosely corresponds to temporal modal logics

3 means to tackle the pro-activity vs. reactivity problem

deliberation/planning vs. handling events & interruptions⇝
hybrid architectures
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Agent-oriented programming
Agent programming languagesHistorical overview

Hybrid architectures: – incomplete –
1987: PRS (Georgeff and Lansky)
1988: IRMA (Bratman, Israel and Pollack)
1991: Abstract BDI architecture (Rao and Georgeff)
1994: INTERRAP (Müller and Pischel)

Agent-Oriented Programming Languages: – incomplete –
1990: AGENT-0 (Shoham)
1996: AgentSpeak(L) (Rao)
1996: Golog (Reiter, Levesque, Lesperance)
1997: 3APL (Hindriks et al.)
1998: ConGolog (Giacomo, Levesque, Lesperance)
2000: JACK (Busetta et al.)
2000: GOAL (Hindriks et al.)
2002: Jason (Bordini, Hubner)
2003: Jadex (Braubach, Pokahr et al.)
2008: BSM/Jazzyk (Novák)
2008: 2APL (Dastani)

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 32/44



Agent-oriented programming
Agent programming languagesThe landscape

..BDI programming systems

.

Theoretically oriented

. declarative languages
built from scratch . new
syntax

. clear theoretical
properties . verification

. declarative KR techniques

. difficult integration with
external/legacy systems

AgentSpeak(L), 3APL,
2APL, GOAL, CAN, etc.

.

Engineering approaches

. layer of specialised
language constructs over
a robust mainstream
programming language
(Java) . code re-usability

. host language semantics

. KR in an imperative
language

. easy integration with
external systems and
environments

JACK, Jadex
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Agent-oriented programming
BDI design patternsBDI: the underlying principles

.
Structure of agent’s internal state
..

.

. ..

.

.

beliefs⇝ B
goals⇝ G
intentions/plans⇝ I (optional)

+ an interface to the environment⇝ E

.
Minimal flow of information
..

.

. ..

.

.

1 agent perceives the environment and reflects it in the belief
base

2 its beliefs about the world determine the goals it pursues

3 pursuing goals triggers behaviors aimed at fulfilling them
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Agent-oriented programming
BDI design patternsAgent system architecture

A = (B,G, E ,P)

.
robot in a 3D environment: search & deliver
..

.

. ..

.

.

Structure:

B: belief base (|=,⊕,⊖)
G: goal base (|=,⊕,⊖)
E : interface to the environment⇝ body (|=,⊘)

Basic capabilities:

FIND: [FIND∗]3holds(item42)
RUN_AWAY: [RUN_AWAY∗]3safe
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Agent-oriented programming
BDI design patternsBD(I) design patterns: TRIGGER

define TRIGGER(φG, τ )
when G⊨⊨⊨φG then τ

end

.
running example (cont.)
..

.

. ..

.

.

TRIGGER(achieve(has(item42)), FIND)
TRIGGER(maintain(keep_safe), RUN_AWAY)
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Agent-oriented programming
BDI design patternsBD(I) design patterns: ADOPT/DROP

define ADOPT(φG, ψ⊕)
when B⊨⊨⊨ψ⊕ and not G⊨⊨⊨φG then G⊕ φG

end

define DROP(φG, ψ⊖)
when B⊨⊨⊨ψ⊖ and G⊨⊨⊨φG then G⊖ φG

end
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Agent-oriented programming
BDI design patternsBD(I) design patterns: ACHIEVE

define ACHIEVE(φG, φB, ψ⊕, ψ⊖, τ )
TRIGGER(φG, τ ) |
ADOPT(φG, ψ⊕) |
DROP(φG, φB) |
DROP(φG, ψ⊖)

end

.
running example cont.
..

.

. ..

.

.

ACHIEVE(
achieve(has(item42)),
holds(item42),
needs(item42),
¬needs(item42) ∨ ¬exists(item42),
FIND)
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Agent-oriented programming
BDI design patternsBD(I) design patterns: MAINTAIN

defineMAINTAIN(φG, φB, τ )
when not B⊨⊨⊨φB then TRIGGER(φG, τ ) |
ADOPT(φG,⊤)

end

.
running example cont.
..

.

. ..

.

.

MAINTAIN(maintain(keep_safe), safe, RUN_AWAY)
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Agent-oriented programming
BDI design patternsPutting it altogether

.
Robot program
..

.

. ..

.

.

PERCEIVE ◦
{
MAINTAIN(

maintain(keep_safe),
threatened,
RUN_AWAY) |

ACHIEVE(
achieve(has(item42)),
holds(item42),
needs(item42),
¬needs(item42) ∨ ¬exists(item42),
FIND)

}
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Conclusion

A4M33MAS/Lecture #4

Conclusion
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Conclusion

Summary

1 Motivation & basic concepts
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4 Conclusion
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Conclusion

Final thoughts
.
Agent-oriented software engineering
..

.

. ..

.

.

... provides a useful view on complex distributed systems. In the
core, there is the idea of loose coupling of components and a
strong emphasis on autonomy.

.
Agent-oriented programming
..

.

. ..

.

.

... is just one of the ways to tackle the problem of reactivity
vs. deliberation.

BDI architecture⇝modelling smart robotic and multi-robot
systems

.

..

.

. ..

.

.

...both fields are a subject of an active on-going research, so the
story is far from over.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 43/44



Conclusion

Final thoughts
.
Agent-oriented software engineering
..

.

. ..

.

.

... provides a useful view on complex distributed systems. In the
core, there is the idea of loose coupling of components and a
strong emphasis on autonomy.

.
Agent-oriented programming
..

.

. ..

.

.

... is just one of the ways to tackle the problem of reactivity
vs. deliberation.

BDI architecture⇝modelling smart robotic and multi-robot
systems

.

..

.

. ..

.

.

...both fields are a subject of an active on-going research, so the
story is far from over.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 43/44



Conclusion

The end

Thank you for your attention.

Questions?

Resources:

ČVUT CourseWare: A4M33MAS

http://www.troposproject.org/
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