Building intelligent agents
(A4M33MAS/autumn 2011/lecture #4)

Peter Novak
Agent Technology Center, Department of Cybernetics
Czech Technical University

October 11th 2011

Czech' agent
Technical technology
University center

Introduction

Cognitive agents revisited

cognitive/knowledge intensive agent

employ cognitive processes, such as knowledge representation
and reasoning as the basis for decision making and action
selection. Le., they construct and maintain a mental state,

mental state

agent’s internal explicit representation of the environment,
itself, its peers, etc. ~ agent's memory

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 2/44

Introduction

The problem

m How to build systems involving mentallistic concepts?
m What are the general principles and guidelines to follow?
m Why building such systems matters?

m What are the main problems we face when building such
systems?

m What is the state-of-the-art in this field?

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 3/44

Lecture outline

Motivation & basic concepts

Agent-oriented software engineering
m Introduction
m Frameworks
m Tropos methodology
m Formal specification of agents

Agent-oriented programming
m Introduction
m Agent programming languages
m BDI design patterns

1 Conclusion

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University

Introduction

October 11t 2011 4/aa

Motivation & basic concepts

A4M33MAS/Lecture #4

Motivation & basic concepts

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 5/44

Motivation & basic concepts

Agent engineering

development methodologies

design languages

agent-oriented prog. languages

run-time system
HW

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 6/44

Motivation & basic concepts

Agent engineering

development methodologies

design languages

agent-oriented prog. languages

run-time system
HW

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 6/44

Motivation & basic concepts
Why “agent-oriented”?

Embodied agents in dynamic & unstructured environments!
m social ~» communication ~ language ~ knowledge
representation, reasoning
m autonomy ~ decision making, robust & modular
implementation
m proactive ~» opportunistic ~ non-deterministic, parallel
m reactive ~ interruptible

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 7/44

Motivation & basic concepts
Why “agent-oriented”?

Embodied agents in dynamic & unstructured environments!
m social ~» communication ~ language ~ knowledge
representation, reasoning
m autonomy ~ decision making, robust & modular
implementation
m proactive ~» opportunistic ~ non-deterministic, parallel
m reactive ~ interruptible

traditional approaches perform poorly in such contexts
interruptions & reacktivity ~ exceptions vs. context restore

non-determinism vs. structure ~» declarative languages (?)

modularity vs. the above ~ elaboration tolerance,
compositionality

A parallelism vs. the above ~ separation vs. interactions
KR&R ~ logic-based approaches

v
Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11t 2011 7/44

Motivation & basic concepts

AO software engineering

Highly parallel non-deterministic interruptible behaviours relying
on relatively heavy weight knowledge representation and
reasoning.

How to model systems in terms of mentalistic concepts?

m knowledge, beliefs m plans
m goals m roles
m obligations m speech-acts

What is the right methodology?

m How to analyse systems?
m How to design systems?

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 8/44

Motivation & basic concepts

AO programming languages

Highly parallel non-deterministic interruptible behaviours relying
on relatively heavy weight knowledge representation and
reasoning.

What is the computational model we should employ for building
non-deterministic, parallel and interruptible systems?

m plan encoding m replanning

m planinstantiation m failure handling
m plan execution m reasoning

® monitoring m integration

What is the system semantics?

m how to: design ~~ implement ~ execute?
m How to verify?

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 9/44

Agent-oriented software engineering

A4M33MAS/Lecture #4

Agent-oriented software
engineering

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 10/44

Agent-oriented software engineering

What is AOSE?

m methods and tools for supporting development of agent
and multi-agent systems oriented software engineering

m modelling languages for the specification of MAS
m techniques for requirements elicitation and analysis

m architectures and methods for designing agents and their
organizations

m platforms for implementation and deployment of MAS
m validation and verification methods

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 11/44

Agent-oriented software engineering

AOSE frameworks

Modelling frameworks: Methodologies:
m Tropos m Tropos
m MaSE m Gaia
m AUML m Prometheus
m AML m MaSE
... ...

Special purpose methodologies & modelling tools directed
towards:

B emergent systems
m mobile agents
m swarm intelligence

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 12/44

Agent-oriented software engineering

Tropos: overview

Tropos is an agent-oriented software engineering (AOSE)
methodology that covers the whole software development
process.

m requirements -driven software development approach ~
exploits goal analysis and actor dependencies analysis

m covers also the very early phases of requirements analysis ~
deeper understanding of the environment & interactions
between software and human agents

m spans from early analysis down to agent-oriented
programming languages issues

m uses mentalistic notions (agent, role, goals, plans, etc.) ~
from early analysis down to the actual implementation.

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 13/44

Agent-oriented software engineering

Tropos language

Basic concepts:
m Actor

m intentional entity: role, position, agent (human or software)
m agentis an actor which occupies a position covering (several)
roles played by the agent
m Goal

m strategicinterest of an actor
m is associated to an actor.

m hard: clear satisfaction criteria
B soft: qualitative “soft” criteria

m Task

m acourse of action (plan/process) associated with a goal and
used to satisfy it by execution

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 14/44

Agent-oriented software engineering

Tropos language (cont.)

Basic concepts (cont.):
m Resource
m physical, orinformative non-intentional entity
m can be used, produced, or shared
m Social dependency (between two actors)

m one actor depends on another to accomplish a goal, execute
a task, or deliver a resource
m the content can be a goal/task/resource

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 15/44

Agent-oriented software engineering
Tropos language (cont.)

Basic relations between entities:
m Decomposition

m AND decomposition
m OR decomposition
m goal ~~ subgoals

m task ~» subtasks

m Means-ends
m atask (mean) used to achieve a goal (end)
m Contribution

m a goal/task/softgoal contributes to the satisfaction of a
softgoal

m Resource need
m atask/goal needs a resource

m Resource production
m a task/goal produces a resource

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 16/44

Agent-oriented software engineering
Tropos methodology

Example model

give the enjoy Malaga
AOSE course beaches
™

) goal
AND decomposition ——>.

contribution link

softgoal

resource
Resource needs

and production

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 17/44

Agent-oriented software engineering
Tropos methodology

Tropos methodology

Phases:
Early requirements (social domain)

Late requirements (system in the domain)

Architectural design (analysis/decomposition)

Detailed design (detailed design)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 18/44

Agent-oriented software engineering
Tropos methodology

Tropos methodology

Phases:
Early requirements (social domain)

m socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified

Late requirements (system in the domain)

Architectural design (analysis/decomposition)

Detailed design (detailed design)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 18/44

Agent-oriented software engineering

Tropos methodology

Phases:
Early requirements (social domain)

m socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified

Late requirements (system in the domain)

m the systemis introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts

Architectural design (analysis/decomposition)

Detailed design (detailed design)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 18/44

Agent-oriented software engineering

Tropos methodology

Phases:
Early requirements (social domain)
m socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified
Late requirements (system in the domain)
m the systemis introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts
Architectural design (analysis/decomposition)

m the actor system is designed

m subactors are introduced and goals/task are assigned
m agents are identified

m agent capabilities are identified

Detailed design (detailed design)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 18/44

Agent-oriented software engineering

Tropos methodology

Phases:
Early requirements (social domain)
m socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified
Late requirements (system in the domain)
m the systemis introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts
Architectural design (analysis/decomposition)

m the actor system is designed

m subactors are introduced and goals/task are assigned
m agents are identified

m agent capabilities are identified

Detailed design (detailed design)

m capabilities, protocols, and agent’s tasks/plan are specified in
detail

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 18/44

Agent-oriented software engineering

Temporal & epistemic logics recap.

Capture the properties of an agent system:
evolution of the system in time
structure and component relationships of the internal state

m beliefs, desires, intentions, obligations, commitments, etc.

\4

evolution of beliefs, desires, etc. in time

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 19/44

Agent-oriented software engineering

Logics and SW engineering

Role of logics in software engineering

Temporal & epistemic logics provide means to capture important

fragments of system specification and lifecycle.

B the system eventually achieves,

resp. always maintains goals (¢, 0O) functional requirements

B perceiving a sensor in the next step
leads to belief update (O)

m upon holding a belief, a goal should
be adopted, resp. dropped (O) / \

B a goal sometimes, resp. always beliefs
triggers a behavior (¢, 0Q)
m behaviors eventually lead to sensors

fFulfillment of goals (<)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University

behaviors

actuators

October 11t" 2011 20/44

Agent-oriented software engineering
Formal specification of agents

Modeling goals: achievement

GO — OBy

GOpU By

ACHIEVEMENT-GOAL:

B Bygiopt A "GO0 — G Op
B GOp A Bpgrop — GO Op

B GOp ANBp — G COp

m GOy — E @ behavior,,

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 21/44

Agent-oriented software engineering
Formal specification of agents

Modeling goals: maintenance

GOp A By — <OOByp

MAINTENANCE-GOAL:

B Byggopt A ~GOp — G@ Op
m GOy A Bogrop — GS Op
m GOp A -By — E @ behavior,

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 22/44

Agent-oriented software engineering

Specification & verification
specification ¢ vs. program P

0
]
1

decomposition ' verification

QY ¢ 6

Pvs. @

decomposition/refinement ~ agent-oriented programming
verification ~» model checking

model checkers:
LTL: e.g., SPIN, etc.
CTL/CTL*: e.g., NuSMV, UPAAL, etc.

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 23/44

Agent-oriented programming

A4M33MAS/Lecture #4

Agent-oriented programming

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 24/44

Agent-oriented programming
Introduction

Goal-oriented agents

What the world
How the world evolves

What my actions do V\i’fhlaég ;vé{li&e Aike

What action |
should do now

goals + state + actions’ consequences ~
action selection

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11t" 2011 25/44

Agent-oriented programming

Structure of cognitive agents

mental state
[beliefs goals j

\/

) actlon selectlon

perceptions actions

beliefs a database of agent’s information about itself, the
world (environment), other agents, etc.
goals description of states the agent “wants” to bring
about

Ay

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 26/44

Agent-oriented programming

Structure of cognitive agents

mental state
[beliefs }[goals j

perceptions P action selection | actions >

beliefs a database of agent’s information about itself, the
world (environment), other agents, etc.
~ NOW
goals description of states the agent “wants” to bring
about
~ FUTURE

How to select actions leading 2
from NOW to the FUTURE ‘

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 26/44

Agent-oriented programming

Structure of cognitive agents

mental state
[beliefs][goals J

perceptions P action selection | actions >

beliefs a database of agent’s information about itself, the
world (environment), other agents, etc.
~ NOW
goals description of states the agent “wants” to bring
about
~ FUTURE

How to select actions leading 2
from NOW to the FUTURE ‘

~> Planning!!!

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 26/44

Agent-oriented programming

Planning

Definition (planning)

... is the process of generating (possibly partial) representations
of future behavior prior to the use of such plans to constrain or
control that behavior. The outcome is usually a set of actions,
with temporal and other constraints on them, for execution by
some agent or agents.

(The MIT Encyclopedia of the Cognitive Sciences)
v

plan - execute - monitor cycle
plan from the current state to a goal state(s)
sequentially execute actions from the plan
monitor success of action execution

m in the case of action failure, (re-)plan again (goto 1)

4

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 27/44

Agent-oriented programming

The issue with planning

to arrive to a valid plan, in the worst case, the planner has to
explore all the possible action sequences!!!

~ high computational complexity (~PSPACE) ®

speed of planning vs. environment dynamics

i speed . .
planning = environment can perform relatively well

speed
planning "Z" environment can lead to fatal inefficiencies

~ the system “suffocates” in (re-)planning

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 28/44

Agent-oriented programming
A way out: reactive planning & BDI

Structural decomposition:
m (B)eliefs: agent’s static information about the world
m (D)esires: situations the agent wants to bring about
m (I)ntentions: courses of action, plans
System dynamics:
m reactive planning: instead of plan-execute-monitor cycle,
select partial plans reactively on the ground of the current
state of the world, beliefs and goals

[beliefs } [plans]

. N & .
perceptions }‘interpreter’ actions

[desires } [intentions]

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 29/44

Agent-oriented programming

Agent-oriented programming

Agent-oriented programming

Promotes programming with mentalistic notions and intentional
stance as an abstraction. Provides a realization of the BDI agent
architecture in pragmatic programming languages.

AOP system:
a logical system for mental states
an interpreted programming language
an ‘agentification’ process

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 30/44

Agent-oriented programming
Agent programming languages

Agent-oriented programming

Agent-oriented programming

Promotes programming with mentalistic notions and intentional
stance as an abstraction. Provides a realization of the BDI agent
architecture in pragmatic programming languages.

AOP system:
a logical system for mental states
an interpreted programming language
an ‘agentification’ process

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 30/44

Agent-oriented programming

What can APLs do for us?

mentalistic abstractions for agent system specification
m beliefs, desires, intentions, plans, practical reasoning rules,
etc.,
m operationalization of the BDI architecture
m tools for encoding the system dynamics
agent-oriented language semantics
m syntax & model of execution
m loosely corresponds to temporal modal logics
means to tackle the pro-activity vs. reactivity problem

m deliberation/planning vs. handling events & interruptions ~
hybrid architectures

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 31/44

Historical overview

Agent-oriented programming

Hybrid architectures: - incomplete -
1987: PRS (Georgeff and Lansky)
1988: IRMA (Bratman, Israel and Pollack)
1991: Abstract BDI architecture (Rao and Georgeff)
1994: INTERRAP (Miiller and Pischel)
Agent-Oriented Programming Languages: —incomplete -
1990: AGENT-0 (Shoham)
1996: AgentSpeak(L) (Rao)
1996: Golog (Reiter, Levesque, Lesperance)
1997: 3APL (Hindriks et al.)
1998: ConGolog (Giacomo, Levesque, Lesperance)
2000: JACK (Busetta et al.)
2000: GOAL (Hindriks et al.)
2002: Jason (Bordini, Hubner)
2003: Jadex (Braubach, Pokahr et al.)
2008: BSM/Jazzyk (Novak)
2008: 2APL (Dastani)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University

October 11" 2011 32/44

The landscape
BDI programming systems

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University

—

declarative languages
built from scratch ~» new
syntax

clear theoretical
properties ~» verification

declarative KR techniques

difficult integration with
external/legacy systems

AgentSpeak(L), 3APL,
2APL, GOAL, CAN, etc.

Agent-oriented programming

\

layer of specialised
language constructs over
a robust mainstream
programming language
(Java) ~» code re-usability

host language semantics

KR in an imperative
language

easy integration with
external systems and
environments

JACK, Jadex

October 11" 2011 33/44

Agent-oriented programming
BDI design patterns

BDI: the underlying principles

m beliefs ~ B

m goals ~ G

m intentions/plans ~ Z (optional)

+ aninterface to the environment ~~ &

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 34/44

Agent-oriented programming
BDI design patterns

BDI: the underlying principles

m beliefs ~ B

m goals ~ G
m intentions/plans ~ Z (optional)
+ aninterface to the environment ~ & g

Minimal flow of information

agent perceives the environment and reflects it in the belief
base

Structure of agent’s internal state B‘ ‘g

its beliefs about the world determine the goals it pursues
pursuing goals triggers behaviors aimed at fulfilling them

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 34/44

Agent-oriented programming
BDI design patterns

Agent system architecture
A=(B,G,&,P)

robot in a 3D environment: search & deliver

Structure:
B: belief base (=, ®,©)
G: goal base (=, @, 0)
&: interface to the environment ~ body (=, ©)
Basic capabilities:
FIND: [FIND*|Cholds(item42)
RUN_AWAY: [RUN_AWAY*|$ safe

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 35/44

Agent-oriented programming

BD(l) design patterns: TRIGGER

BTG

define TRIGGER(pg, 7)

when GEpg then 7
end

running example (cont.)

TRIGGER (achieve(has(item42)), FIND)
TRIGGER(maintain(keep_safe), RUN_AWAY)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 36/44

Agent-oriented programming

BD(I) design patterns: ADOPT/DROP™ """

define ADOPT(pq, ¥a)

when BEyg and not Gy then G $ o
end

define DROP(pq, ¥c)

when BEeys and Gepg then G © ¢
end

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 37/44

Agent-oriented programming
BDI design patterns

BD(I) design patterns: ACHIEVE

TRIGGER(pc, 7) |
ADOPT(pa, ¥a) |
DROP(¢g, ¥B) |

DROP(pc, ¥e)
end g
running example cont.

ACHIEVE(
achieve(has(item42)),
holds(item42),
needs(item42),
—needs(item42) V —exists(item42),
FIND)

define ACHIEVE(¢a, ¢B, Ya, o, T) B~ g

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 38/44

Agent-oriented programming

BD(l) design patterns: MAINTAIN
define MAINTAIN(pg, B, T) t '
when not BEyg then TRIGGER(pg, 7) |
ADOPT(pa, T) g

end

running example cont.

MAINTAIN(maintain(keep_safe), safe, RUN_AWAY)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 39/44

Agent-oriented programming
BDI design patterns

Putting it altogether

Robot program

PERCEIVE o PN
{
MAINTAIN(B g

maintain(keep_safe),

threatened,

RUN_AWAY) | g
ACHIEVE(

achieve(has(item42)),

holds(item42),

needs(item42),

—needs(item42) V —ezists(item42),

FIND)

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 40/44

Conclusion

A4M33MAS/Lecture #4

Conclusion

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 41/44

Summary

Motivation & basic concepts

Agent-oriented software engineering
m Introduction
m Frameworks
m Tropos methodology
m Formal specification of agents

Agent-oriented programming
m Introduction
m Agent programming languages
m BDI design patterns

1 Conclusion

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University

Conclusion

October 11t" 2011 42/4a

Conclusion

Final thoughts

Agent-oriented software engineering

... provides a useful view on complex distributed systems. In the
core, there is the idea of loose coupling of components and a
strong emphasis on autonomy.

Agent-oriented programming
... isjust one of the ways to tackle the problem of reactivity
vs. deliberation.
m BDI architecture ~» modelling smart robotic and multi-robot
systems

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 43/44

Conclusion

Final thoughts

Agent-oriented software engineering

... provides a useful view on complex distributed systems. In the
core, there is the idea of loose coupling of components and a
strong emphasis on autonomy.

Agent-oriented programming
... isjust one of the ways to tackle the problem of reactivity
vs. deliberation.
m BDI architecture ~» modelling smart robotic and multi-robot
systems

...both fields are a subject of an active on-going research, so the
story is far from over.

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 43/44

Conclusion

The end

Thank you For your attention.

Questions?

Resources:

m CVUT CourseWare: A4M33MAS
W http://www.troposproject.org/

Peter Novak - Agent Technology Center, Department of Cybernetics Czech Technical University October 11" 2011 44/44

	Motivation & basic concepts
	Agent-oriented software engineering
	Introduction
	Frameworks
	Tropos methodology
	Formal specification of agents

	Agent-oriented programming
	Introduction
	Agent programming languages
	BDI design patterns

	Conclusion

