
Building intelligent agents
(A4M33MAS/autumn 2011/lecture #4)

Peter Novák

Agent Technology Center, Department of Cybernetics

Czech Technical University

October 11th 2011

Czech
Technical
University

agent
technology
center

Introduction

Cognitive agents revisited

.
cognitive/knowledge intensive agent
..

.

. ..

.

.

employ cognitive processes, such as knowledge representation
and reasoning as the basis for decision making and action
selection. I.e., they construct and maintain a mental state.

.
mental state
..

.

. ..

.

.

agent’s internal explicit representation of the environment,
itself, its peers, etc. ⇝ agent’s memory

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 2/44

Introduction

The problem

How to build systems involving mentallistic concepts?

What are the general principles and guidelines to follow?

Why building such systems matters?

What are the main problems we face when building such
systems?

What is the state-of-the-art in this field?

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 3/44

Introduction

Lecture outline

1 Motivation & basic concepts

2 Agent-oriented software engineering
Introduction
Frameworks
Tropos methodology
Formal specification of agents

3 Agent-oriented programming
Introduction
Agent programming languages
BDI design patterns

4 Conclusion

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 4/44

Motivation & basic concepts

A4M33MAS/Lecture #4

Motivation & basic concepts

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 5/44

Motivation & basic concepts

Agent engineering

HW

run-time system

agent-oriented prog. languages

design languages

development methodologies

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 6/44

Motivation & basic concepts

Agent engineering

HW

run-time system

agent-oriented prog. languages

design languages

development methodologies

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 6/44

Motivation & basic concepts

Why “agent-oriented”?
Embodied agents in dynamic & unstructured environments!

social⇝ communication⇝ language⇝ knowledge
representation, reasoning
autonomy⇝ decision making, robust & modular
implementation
proactive⇝ opportunistic⇝ non-deterministic, parallel
reactive⇝ interruptible

.
traditional approaches perform poorly in such contexts
..

.

. ..

.

.

1 interruptions & reactivity⇝ exceptions vs. context restore

2 non-determinism vs. structure⇝ declarative languages (?)

3 modularity vs. the above⇝ elaboration tolerance,
compositionality

4 parallelism vs. the above⇝ separation vs. interactions

5 KR&R⇝ logic-based approaches

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 7/44

Motivation & basic concepts

Why “agent-oriented”?
Embodied agents in dynamic & unstructured environments!

social⇝ communication⇝ language⇝ knowledge
representation, reasoning
autonomy⇝ decision making, robust & modular
implementation
proactive⇝ opportunistic⇝ non-deterministic, parallel
reactive⇝ interruptible

.
traditional approaches perform poorly in such contexts
..

.

. ..

.

.

1 interruptions & reactivity⇝ exceptions vs. context restore

2 non-determinism vs. structure⇝ declarative languages (?)

3 modularity vs. the above⇝ elaboration tolerance,
compositionality

4 parallelism vs. the above⇝ separation vs. interactions

5 KR&R⇝ logic-based approaches

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 7/44

Motivation & basic concepts

AO software engineering
.
..

.

. ..

.

.

Highly parallel non-deterministic interruptible behaviours relying
on relatively heavy weight knowledge representation and
reasoning.

How to model systems in terms of mentalistic concepts?

knowledge, beliefs

goals

obligations

plans

roles

speech-acts

What is the right methodology?

How to analyse systems?
How to design systems?

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 8/44

Motivation & basic concepts

AO programming languages
.
..

.

. ..

.

.

Highly parallel non-deterministic interruptible behaviours relying
on relatively heavy weight knowledge representation and
reasoning.

What is the computational model we should employ for building
non-deterministic, parallel and interruptible systems?

plan encoding

plan instantiation

plan execution

monitoring

replanning

failure handling

reasoning

integration

What is the system semantics?

how to: design⇝ implement⇝ execute?
How to verify?

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 9/44

Agent-oriented software engineering

A4M33MAS/Lecture #4

Agent-oriented software
engineering

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 10/44

Agent-oriented software engineering
IntroductionWhat is AOSE?

methods and tools for supporting development of agent
and multi-agent systems oriented software engineering

modelling languages for the specification of MAS

techniques for requirements elicitation and analysis

architectures and methods for designing agents and their
organizations

platforms for implementation and deployment of MAS

validation and verification methods

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 11/44

Agent-oriented software engineering
FrameworksAOSE frameworks

Modelling frameworks:

Tropos

MaSE

AUML

AML

. . .

Methodologies:

Tropos

Gaia

Prometheus

MaSE

. . .

Special purpose methodologies & modelling tools directed
towards:

emergent systems

mobile agents

swarm intelligence

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 12/44

Agent-oriented software engineering
Tropos methodologyTropos: overview

.

..

.

. ..

.

.

Tropos is an agent-oriented software engineering (AOSE)
methodology that covers the whole software development
process.

requirements ­driven software development approach⇝
exploits goal analysis and actor dependencies analysis

covers also the very early phases of requirements analysis⇝
deeper understanding of the environment & interactions
between software and human agents

spans from early analysis down to agent-oriented
programming languages issues

uses mentalistic notions (agent, role, goals, plans, etc.) ⇝
from early analysis down to the actual implementation.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 13/44

Agent-oriented software engineering
Tropos methodologyTropos language

Basic concepts:

Actor

intentional entity: role, position, agent (human or software)
agent is an actor which occupies a position covering (several)
roles played by the agent

Goal

strategic interest of an actor
is associated to an actor.

hard : clear satisfaction criteria
soft : qualitative “soft” criteria

Task

a course of action (plan/process) associated with a goal and
used to satisfy it by execution

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 14/44

Agent-oriented software engineering
Tropos methodologyTropos language (cont.)

Basic concepts (cont.):

Resource

physical, or informative non-intentional entity
can be used, produced, or shared

Social dependency (between two actors)

one actor depends on another to accomplish a goal, execute
a task, or deliver a resource
the content can be a goal/task/resource

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 15/44

Agent-oriented software engineering
Tropos methodologyTropos language (cont.)

Basic relations between entities:
Decomposition

AND decomposition
OR decomposition
goal⇝ subgoals
task⇝ subtasks

Means-ends
a task (mean) used to achieve a goal (end)

Contribution
a goal/task/softgoal contributes to the satisfaction of a
softgoal

Resource need
a task/goal needs a resource

Resource production
a task/goal produces a resource

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 16/44

Agent-oriented software engineering
Tropos methodologyExample model

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 17/44

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1 Early requirements (social domain)

socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified

2 Late requirements (system in the domain)
the system is introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts

3 Architectural design (analysis/decomposition)
the actor system is designed
subactors are introduced and goals/task are assigned
agents are identified
agent capabilities are identified

4 Detailed design (detailed design)
capabilities, protocols, and agentʼs tasks/plan are specified in
detail

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 18/44

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1 Early requirements (social domain)

socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified

2 Late requirements (system in the domain)
the system is introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts

3 Architectural design (analysis/decomposition)
the actor system is designed
subactors are introduced and goals/task are assigned
agents are identified
agent capabilities are identified

4 Detailed design (detailed design)
capabilities, protocols, and agentʼs tasks/plan are specified in
detail

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 18/44

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1 Early requirements (social domain)

socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified

2 Late requirements (system in the domain)
the system is introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts

3 Architectural design (analysis/decomposition)
the actor system is designed
subactors are introduced and goals/task are assigned
agents are identified
agent capabilities are identified

4 Detailed design (detailed design)
capabilities, protocols, and agentʼs tasks/plan are specified in
detail

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 18/44

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1 Early requirements (social domain)

socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified

2 Late requirements (system in the domain)
the system is introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts

3 Architectural design (analysis/decomposition)
the actor system is designed
subactors are introduced and goals/task are assigned
agents are identified
agent capabilities are identified

4 Detailed design (detailed design)
capabilities, protocols, and agentʼs tasks/plan are specified in
detail

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 18/44

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1 Early requirements (social domain)

socio- and organizational setting is analyzed and the most
relevant actors and their relationships are identified

2 Late requirements (system in the domain)
the system is introduced as a new actor of the social domain
and analyzed in terms of Tropos concepts

3 Architectural design (analysis/decomposition)
the actor system is designed
subactors are introduced and goals/task are assigned
agents are identified
agent capabilities are identified

4 Detailed design (detailed design)
capabilities, protocols, and agentʼs tasks/plan are specified in
detail

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 18/44

Agent-oriented software engineering
Formal specification of agentsTemporal & epistemic logics recap.

Capture the properties of an agent system:

1 evolution of the system in time

2 structure and component relationships of the internal state

beliefs, desires, intentions, obligations, commitments, etc.

.

evolution of beliefs, desires, etc. in time

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 19/44

Agent-oriented software engineering
Formal specification of agentsLogics and SW engineering

.
Role of logics in software engineering
..

.

. ..

.

.

Temporal & epistemic logics provide means to capture important
fragments of system specification and lifecycle.

the system eventually achieves,
resp. always maintains goals (3, 2)

perceiving a sensor in the next step
leads to belief update (h)
upon holding a belief, a goal should
be adopted, resp. dropped (h)
a goal sometimes, resp. always
triggers a behavior (3,2 h)
behaviors eventually lead to
fulfillment of goals (3)

goals

functional requirements

beliefs

sensors

behaviors

actuators

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 20/44

Agent-oriented software engineering
Formal specification of agentsModeling goals: achievement

G3φ −→ 3Bφ

G3φU Bφ

.
ACHIEVEMENT-GOAL:
..

.

. ..

.

.

Bφadopt ∧ ¬G3φ −→ G⊕ 3φ

G3φ ∧ Bφdrop −→ G⊖ 3φ

G3φ ∧ Bφ −→ G⊖ 3φ

G3φ −→ E⊘ behaviorφ

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 21/44

Agent-oriented software engineering
Formal specification of agentsModeling goals: maintenance

G2φ ∧ B¬φ −→ 32Bφ

.
MAINTENANCE-GOAL:
..

.

. ..

.

.

Bφadopt ∧ ¬G2φ −→ G⊕ 2φ

G2φ ∧ Bφdrop −→ G⊖ 2φ

G2φ ∧ ¬Bφ −→ E⊘ behaviorφ

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 22/44

Agent-oriented software engineering
Formal specification of agentsSpecification & verification

specification φ vs. programP

φ

P
decomposition

φ

P vs. φ

verification

decomposition/refinement⇝ agent-oriented programming
verification⇝model checking

model checkers:

LTL: e.g., SPIN, etc.

CTL/CTL*: e.g., NuSMV, UPAAL, etc.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 23/44

Agent-oriented programming

A4M33MAS/Lecture #4

Agent-oriented programming

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 24/44

Agent-oriented programming
IntroductionGoal-oriented agents

Agent

E
n
v
iro

n
m
e
n
t

Sensors

What it will be like
 if I do action A

What action I
should do now

State

How the world evolves

What my actions do

Goals

Actuators

What the world
is like now

goals + state + actions’ consequences⇝
action selection

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 25/44

Agent-oriented programming
IntroductionStructure of cognitive agents

goalsbeliefs

action selection
actionsperceptions

mental state

beliefs a database of agent’s information about itself, the
world (environment), other agents, etc.
⇝ NOW

goals description of states the agent “wants” to bring
about
⇝ FUTURE

How to select actions leading
from NOW to the FUTURE ?

⇝ Planning!!!
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 26/44

Agent-oriented programming
IntroductionStructure of cognitive agents

goalsbeliefs

action selection
actionsperceptions

mental state

beliefs a database of agent’s information about itself, the
world (environment), other agents, etc.
⇝ NOW

goals description of states the agent “wants” to bring
about
⇝ FUTURE

How to select actions leading
from NOW to the FUTURE ?

⇝ Planning!!!
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 26/44

Agent-oriented programming
IntroductionStructure of cognitive agents

goalsbeliefs

action selection
actionsperceptions

mental state

beliefs a database of agent’s information about itself, the
world (environment), other agents, etc.
⇝ NOW

goals description of states the agent “wants” to bring
about
⇝ FUTURE

How to select actions leading
from NOW to the FUTURE ?

⇝ Planning!!!
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 26/44

Agent-oriented programming
IntroductionPlanning

.
Definition (planning)
..

.

. ..

.

.

... is the process of generating (possibly partial) representations
of future behavior prior to the use of such plans to constrain or
control that behavior. The outcome is usually a set of actions,
with temporal and other constraints on them, for execution by
some agent or agents.

(The MIT Encyclopedia of the Cognitive Sciences)

.
plan - execute - monitor cycle
..

.

. ..

.

.

1 plan from the current state to a goal state(s)

2 sequentially execute actions from the plan

3 monitor success of action execution

in the case of action failure, (re-)plan again (goto 1)

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 27/44

Agent-oriented programming
IntroductionThe issue with planning

to arrive to a valid plan, in the worst case, the planner has to
explore all the possible action sequences!!!

⇝ high computational complexity (≈PSPACE) /

speed of planning vs. environment dynamics

planning
speed
≻ environment can perform relatively well

planning
speed
≺ environment can lead to fatal inefficiencies

⇝ the system “suffocates” in (re-)planning

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 28/44

Agent-oriented programming
IntroductionA way out: reactive planning & BDI

Structural decomposition:
(B)eliefs: agent’s static information about the world
(D)esires: situations the agent wants to bring about
(I)ntentions: courses of action, plans

System dynamics:
reactive planning: instead of plan-execute-monitor cycle,
select partial plans reactively on the ground of the current
state of the world, beliefs and goals

desires

beliefs

intentions

plans

interpreter
actionsperceptions

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 29/44

Agent-oriented programming
Agent programming languages

Agent-oriented programming

.
Agent-oriented programming
..

.

. ..

.

.

Promotes programming with mentalistic notions and intentional
stance as an abstraction. Provides a realization of the BDI agent
architecture in pragmatic programming languages.

AOP system:

1 a logical system formental states

2 an interpreted programming language

3 an ‘agentification’ process

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 30/44

Agent-oriented programming
Agent programming languages

Agent-oriented programming

.
Agent-oriented programming
..

.

. ..

.

.

Promotes programming with mentalistic notions and intentional
stance as an abstraction. Provides a realization of the BDI agent
architecture in pragmatic programming languages.

AOP system:

1 a logical system formental states

2 an interpreted programming language

3 an ‘agentification’ process

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 30/44

Agent-oriented programming
Agent programming languagesWhat can APLs do for us?

1 mentalistic abstractions for agent system specification

beliefs, desires, intentions, plans, practical reasoning rules,
etc.,
operationalization of the BDI architecture
tools for encoding the system dynamics

2 agent-oriented language semantics

syntax & model of execution
loosely corresponds to temporal modal logics

3 means to tackle the pro-activity vs. reactivity problem

deliberation/planning vs. handling events & interruptions⇝
hybrid architectures

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 31/44

Agent-oriented programming
Agent programming languagesHistorical overview

Hybrid architectures: – incomplete –
1987: PRS (Georgeff and Lansky)
1988: IRMA (Bratman, Israel and Pollack)
1991: Abstract BDI architecture (Rao and Georgeff)
1994: INTERRAP (Müller and Pischel)

Agent-Oriented Programming Languages: – incomplete –
1990: AGENT-0 (Shoham)
1996: AgentSpeak(L) (Rao)
1996: Golog (Reiter, Levesque, Lesperance)
1997: 3APL (Hindriks et al.)
1998: ConGolog (Giacomo, Levesque, Lesperance)
2000: JACK (Busetta et al.)
2000: GOAL (Hindriks et al.)
2002: Jason (Bordini, Hubner)
2003: Jadex (Braubach, Pokahr et al.)
2008: BSM/Jazzyk (Novák)
2008: 2APL (Dastani)

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 32/44

Agent-oriented programming
Agent programming languagesThe landscape

..BDI programming systems

.

Theoretically oriented

. declarative languages
built from scratch . new
syntax

. clear theoretical
properties . verification

. declarative KR techniques

. difficult integration with
external/legacy systems

AgentSpeak(L), 3APL,
2APL, GOAL, CAN, etc.

.

Engineering approaches

. layer of specialised
language constructs over
a robust mainstream
programming language
(Java) . code re-usability

. host language semantics

. KR in an imperative
language

. easy integration with
external systems and
environments

JACK, Jadex

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 33/44

Agent-oriented programming
BDI design patternsBDI: the underlying principles

.
Structure of agent’s internal state
..

.

. ..

.

.

beliefs⇝ B
goals⇝ G
intentions/plans⇝ I (optional)

+ an interface to the environment⇝ E

.
Minimal flow of information
..

.

. ..

.

.

1 agent perceives the environment and reflects it in the belief
base

2 its beliefs about the world determine the goals it pursues

3 pursuing goals triggers behaviors aimed at fulfilling them

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 34/44

Agent-oriented programming
BDI design patternsBDI: the underlying principles

.
Structure of agent’s internal state
..

.

. ..

.

.

beliefs⇝ B
goals⇝ G
intentions/plans⇝ I (optional)

+ an interface to the environment⇝ E

.
Minimal flow of information
..

.

. ..

.

.

1 agent perceives the environment and reflects it in the belief
base

2 its beliefs about the world determine the goals it pursues

3 pursuing goals triggers behaviors aimed at fulfilling them

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 34/44

Agent-oriented programming
BDI design patternsAgent system architecture

A = (B,G, E ,P)

.
robot in a 3D environment: search & deliver
..

.

. ..

.

.

Structure:

B: belief base (|=,⊕,⊖)
G: goal base (|=,⊕,⊖)
E : interface to the environment⇝ body (|=,⊘)

Basic capabilities:

FIND: [FIND∗]3holds(item42)
RUN_AWAY: [RUN_AWAY∗]3safe

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 35/44

Agent-oriented programming
BDI design patternsBD(I) design patterns: TRIGGER

define TRIGGER(φG, τ)
when G⊨⊨⊨φG then τ

end

.
running example (cont.)
..

.

. ..

.

.

TRIGGER(achieve(has(item42)), FIND)
TRIGGER(maintain(keep_safe), RUN_AWAY)

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 36/44

Agent-oriented programming
BDI design patternsBD(I) design patterns: ADOPT/DROP

define ADOPT(φG, ψ⊕)
when B⊨⊨⊨ψ⊕ and not G⊨⊨⊨φG then G⊕ φG

end

define DROP(φG, ψ⊖)
when B⊨⊨⊨ψ⊖ and G⊨⊨⊨φG then G⊖ φG

end

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 37/44

Agent-oriented programming
BDI design patternsBD(I) design patterns: ACHIEVE

define ACHIEVE(φG, φB, ψ⊕, ψ⊖, τ)
TRIGGER(φG, τ) |
ADOPT(φG, ψ⊕) |
DROP(φG, φB) |
DROP(φG, ψ⊖)

end

.
running example cont.
..

.

. ..

.

.

ACHIEVE(
achieve(has(item42)),
holds(item42),
needs(item42),
¬needs(item42) ∨ ¬exists(item42),
FIND)

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 38/44

Agent-oriented programming
BDI design patternsBD(I) design patterns: MAINTAIN

defineMAINTAIN(φG, φB, τ)
when not B⊨⊨⊨φB then TRIGGER(φG, τ) |
ADOPT(φG,⊤)

end

.
running example cont.
..

.

. ..

.

.

MAINTAIN(maintain(keep_safe), safe, RUN_AWAY)

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 39/44

Agent-oriented programming
BDI design patternsPutting it altogether

.
Robot program
..

.

. ..

.

.

PERCEIVE ◦
{
MAINTAIN(

maintain(keep_safe),
threatened,
RUN_AWAY) |

ACHIEVE(
achieve(has(item42)),
holds(item42),
needs(item42),
¬needs(item42) ∨ ¬exists(item42),
FIND)

}

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 40/44

Conclusion

A4M33MAS/Lecture #4

Conclusion

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 41/44

Conclusion

Summary

1 Motivation & basic concepts

2 Agent-oriented software engineering
Introduction
Frameworks
Tropos methodology
Formal specification of agents

3 Agent-oriented programming
Introduction
Agent programming languages
BDI design patterns

4 Conclusion

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 42/44

Conclusion

Final thoughts
.
Agent-oriented software engineering
..

.

. ..

.

.

... provides a useful view on complex distributed systems. In the
core, there is the idea of loose coupling of components and a
strong emphasis on autonomy.

.
Agent-oriented programming
..

.

. ..

.

.

... is just one of the ways to tackle the problem of reactivity
vs. deliberation.

BDI architecture⇝modelling smart robotic and multi-robot
systems

.

..

.

. ..

.

.

...both fields are a subject of an active on-going research, so the
story is far from over.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 43/44

Conclusion

Final thoughts
.
Agent-oriented software engineering
..

.

. ..

.

.

... provides a useful view on complex distributed systems. In the
core, there is the idea of loose coupling of components and a
strong emphasis on autonomy.

.
Agent-oriented programming
..

.

. ..

.

.

... is just one of the ways to tackle the problem of reactivity
vs. deliberation.

BDI architecture⇝modelling smart robotic and multi-robot
systems

.

..

.

. ..

.

.

...both fields are a subject of an active on-going research, so the
story is far from over.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 43/44

Conclusion

The end

Thank you for your attention.

Questions?

Resources:

ČVUT CourseWare: A4M33MAS

http://www.troposproject.org/

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 11th 2011 44/44

	Motivation & basic concepts
	Agent-oriented software engineering
	Introduction
	Frameworks
	Tropos methodology
	Formal specification of agents

	Agent-oriented programming
	Introduction
	Agent programming languages
	BDI design patterns

	Conclusion

