
Building intelligent agents
(A4M33MAS/autumn 2010/lecture #3)

Peter Novák
Agent Technology Center, Department of Cybernetics
Czech Technical University

October 12th 2010

Czech

Technical

University

agent
technology
center

IntroductionCognitive agents revisited

cognitive/knowledge intensive agent
employ cognitive processes, such as knowledge
representation and reasoning as the basis for decision
making and action selection. I.e., they construct and maintain
a mental state.

mental state
agent’s internal explicit representation of the environment,
itself, its peers, etc. agent’s memory

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 2/43

IntroductionThe problem

How to build systems involving mentallistic concepts?
What are the general principles and guidelines to follow?
Why building such systems matters?
What are the main problems we face when building such
systems?
What is the state-of-the-art in this field?

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 3/43

IntroductionLecture outline

1 Motivation & basic concepts

2 Agent-oriented software engineering
Introduction
Frameworks
Tropos methodology

3 Agent-oriented programming
Introduction
Agent programming languages
AgentSpeak(L)/Jason

4 Conclusion

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 4/43

Motivation & basic concepts

A4M33MAS/Lecture #3

Motivation & basic concepts

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 5/43

Motivation & basic conceptsAgent engineering

HW

run-time system

agent-oriented prog. languages

design languages

development methodologies

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 6/43

Motivation & basic conceptsAgent engineering

HW

run-time system

agent-oriented prog. languages

design languages

development methodologies

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 6/43

Motivation & basic conceptsWhy “agent-oriented”?
social communication language knowledge
representation, reasoning
autonomy decision making, robust & modular
implementation
proactive opportunistic non-deterministic, parallel
reactive interruptible

traditional approaches perform poorly in such contexts
1. interruptions & reactivity exceptions vs. context restore
2. non-determinism vs. structure declarative languages
3. modularity vs. the above elaboration tolerance,

compositionality
4. parallelism vs. the above separation vs. interactions
5. KR&R logic-based approaches

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 7/43

Motivation & basic conceptsAO software engineering

Highly parallel non-deterministic interruptible behaviours
relying on relatively heavy weight knowledge representation
and reasoning.

How to model systems in terms of mentalistic concepts?

knowledge, beliefs
goals
obligations

plans
roles
speech-acts

What is the right methodology?

How to analyse systems?
How to design systems?

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 8/43

Motivation & basic conceptsAO programming languages

Highly parallel non-deterministic interruptible behaviours
relying on relatively heavy weight knowledge representation
and reasoning.

What is the computational model we should employ for
building non-deterministic, parallel and interruptible systems?

plan encoding
plan instantiation
plan execution
monitoring

replanning
failure handling
reasoning
integration

What is the system semantics?

how to: design implementation execution?
How to verify?

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 9/43

Agent-oriented software engineering

A4M33MAS/Lecture #3

Agent-oriented software
engineering

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 10/43

Agent-oriented software engineering
IntroductionWhat is AOSE?

methods and tools for supporting development of agent
and multi-agent systems oriented software engineering
modelling languages for the specification of MAS
techniques for requirements elicitation and analysis
architectures and methods for designing agents and their
organizations
platforms for implementation and deployment of MAS
validation and verification methods

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 11/43

Agent-oriented software engineering
FrameworksAOSE frameworks

Modelling frameworks:
Tropos
MaSE
AUML
AML
. . .

Methodologies:
Tropos
Gaia
Prometheus
MaSE
. . .

Special purpose methodologies & modelling tools
directed towards:

emergent systems
mobile agents
swarm intelligence

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 12/43

Agent-oriented software engineering
Tropos methodologyTropos: overview

Tropos is an agent-oriented software engineering (AOSE)
methodology that covers the whole software development
process.

requirements driven software development approach
exploits goal analysis and actor dependencies analysis
covers also the very early phases of requirements
analysis deeper understanding of the environment &
interactions between software and human agents
spans from early early analysis down to agent-oriented
programming languages issues
uses mentalistic notions (agent, role, goals, plans, etc.)
 from early analysis down to the actual implementation.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 13/43

Agent-oriented software engineering
Tropos methodologyTropos language

Basic concepts:
Actor

I intentional entity: role, position, agent (human or
software)

I agent is an actor which occupies a position covering
(several) roles played by the agent

Goal
I strategic interest of an actor
I is associated to an actor.

I hard: clear satisfaction criteria
I soft: qualitative “soft” cirteria

Task
I a course of action (plan/process) associated with a goal

and used to satisfy it by execution

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 14/43

Agent-oriented software engineering
Tropos methodologyTropos language (cont.)

Basic concepts (cont.):
Resource

I physical, or informative non-intentional entity
I can be used, produced, or shared

Social dependency (between two actors)
I one actor depends on another to accomplish a goal,

execute a task, or deliver a resource
I the content can be a goal/task/resource

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 15/43

Agent-oriented software engineering
Tropos methodologyTropos language (cont.)

Basic relations between entities:
Decomposition

I AND decomposition
I OR decomposition
I goal subgoals
I task subtasks

Means-ends
I a task (mean) used to achieve a goal (end)

Contribution
I a goal/task/softgoal contributes to the satisfaction of a

softgoal

Resource need
I a task/goal needs a resource

Resource production
I a task/goal produces a resource

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 16/43

Agent-oriented software engineering
Tropos methodologyExample model

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 17/43

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1. Early requirements (social domain)

I socio- and organizational setting is analyzed and the
most relevant actors and their relationships are identified

2. Late requirements (system in the domain)
I the system is introduced as a new actor of the social

domain and analyzed in terms of Tropos concepts

3. Architectural design (analysis/decomposition)
I the actor system is designed
I subactors are introduced and goals/task are assigned
I agents are identified
I agent capabilities are identified

4. Detailed design (detailed design)
I capabilities, protocols, and agent’s tasks/plan are

specified in detail
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 18/43

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1. Early requirements (social domain)

I socio- and organizational setting is analyzed and the
most relevant actors and their relationships are identified

2. Late requirements (system in the domain)
I the system is introduced as a new actor of the social

domain and analyzed in terms of Tropos concepts

3. Architectural design (analysis/decomposition)
I the actor system is designed
I subactors are introduced and goals/task are assigned
I agents are identified
I agent capabilities are identified

4. Detailed design (detailed design)
I capabilities, protocols, and agent’s tasks/plan are

specified in detail
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 18/43

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1. Early requirements (social domain)

I socio- and organizational setting is analyzed and the
most relevant actors and their relationships are identified

2. Late requirements (system in the domain)
I the system is introduced as a new actor of the social

domain and analyzed in terms of Tropos concepts

3. Architectural design (analysis/decomposition)
I the actor system is designed
I subactors are introduced and goals/task are assigned
I agents are identified
I agent capabilities are identified

4. Detailed design (detailed design)
I capabilities, protocols, and agent’s tasks/plan are

specified in detail
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 18/43

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1. Early requirements (social domain)

I socio- and organizational setting is analyzed and the
most relevant actors and their relationships are identified

2. Late requirements (system in the domain)
I the system is introduced as a new actor of the social

domain and analyzed in terms of Tropos concepts

3. Architectural design (analysis/decomposition)
I the actor system is designed
I subactors are introduced and goals/task are assigned
I agents are identified
I agent capabilities are identified

4. Detailed design (detailed design)
I capabilities, protocols, and agent’s tasks/plan are

specified in detail
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 18/43

Agent-oriented software engineering
Tropos methodologyTropos methodology

Phases:
1. Early requirements (social domain)

I socio- and organizational setting is analyzed and the
most relevant actors and their relationships are identified

2. Late requirements (system in the domain)
I the system is introduced as a new actor of the social

domain and analyzed in terms of Tropos concepts

3. Architectural design (analysis/decomposition)
I the actor system is designed
I subactors are introduced and goals/task are assigned
I agents are identified
I agent capabilities are identified

4. Detailed design (detailed design)
I capabilities, protocols, and agent’s tasks/plan are

specified in detail
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 18/43

Agent-oriented programming

A4M33MAS/Lecture #3

Agent-oriented programming

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 19/43

Agent-oriented programming
IntroductionGoal-oriented agents

Agent

E
n
v
iro

n
m
e
n
t

Sensors

What it will be like
 if I do action A

What action I
should do now

State

How the world evolves

What my actions do

Goals

Actuators

What the world
is like now

goals + state + actions’ consequences action selection

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 20/43

Agent-oriented programming
IntroductionStructure of cognitive agents

goalsbeliefs

action selection
actionsperceptions

mental state

beliefs a database of agent’s information about itself,
the world (environment), other agents, etc.
 NOW

goals description of states the agent “wants” to bring
about
 FUTURE

How to select actions leading
from NOW to the FUTURE ?

 Planning!!!
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 21/43

Agent-oriented programming
IntroductionStructure of cognitive agents

goalsbeliefs

action selection
actionsperceptions

mental state

beliefs a database of agent’s information about itself,
the world (environment), other agents, etc.
 NOW

goals description of states the agent “wants” to bring
about
 FUTURE

How to select actions leading
from NOW to the FUTURE ?

 Planning!!!
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 21/43

Agent-oriented programming
IntroductionStructure of cognitive agents

goalsbeliefs

action selection
actionsperceptions

mental state

beliefs a database of agent’s information about itself,
the world (environment), other agents, etc.
 NOW

goals description of states the agent “wants” to bring
about
 FUTURE

How to select actions leading
from NOW to the FUTURE ?

 Planning!!!
Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 21/43

Agent-oriented programming
IntroductionPlanning

Definition (planning)
... is the process of generating (possibly partial)
representations of future behavior prior to the use of such
plans to constrain or control that behavior. The outcome is
usually a set of actions, with temporal and other constraints
on them, for execution by some agent or agents.

(The MIT Encyclopedia of the Cognitive Sciences)

plan - execute - monitor cycle
1. plan from the current state to a goal state(s)
2. sequentially execute actions from the plan
3. monitor success of action execution

I in the case of action failure, (re-)plan again (goto 1)

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 22/43

Agent-oriented programming
IntroductionThe issue with planning

to arrive to a valid plan, in the worst case, the planner has to
explore all the possible action sequences!!!

 high computational complexity (≈PSPACE) /

speed of planning vs. environment dynamics

planning
speed
� environment can perform relatively well

planning
speed
≺ environment can lead to fatal inefficiencies

 the system “suffocates” in (re-)planning

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 23/43

Agent-oriented programming
IntroductionA way out: BDI

Structural decomposition:
(B)eliefs: agent’s static information about the world
(D)esires: situations the agent wants to bring about
(I)ntentions: courses of action, plans

System dynamics:
reactive planning: instead of plan-execute-monitor
cycle, select partial plans reactively on the ground of the
current state of the world, beliefs and goals

desires

beliefs

intentions

plans

interpreter
actionsperceptions

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 24/43

Agent-oriented programming
Agent programming languagesAgent-oriented programming

Agent-oriented programming
Promotes programming with mentalistic notions and
intentional stance as an abstraction. Provides a realization of
the BDI agent architecture in pragmatic programming
languages.

AOP system:
1. a logical system for mental states
2. an interpreted programming language
3. an ‘agentification’ process

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 25/43

Agent-oriented programming
Agent programming languagesAgent-oriented programming

Agent-oriented programming
Promotes programming with mentalistic notions and
intentional stance as an abstraction. Provides a realization of
the BDI agent architecture in pragmatic programming
languages.

AOP system:
1. a logical system for mental states
2. an interpreted programming language
3. an ‘agentification’ process

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 25/43

Agent-oriented programming
Agent programming languagesWhat can APLs do for us?

1. mentalistic abstractions for agent system specification
I beliefs, desires, intentions, plans, practical reasoning

rules, etc.,
I operationalization of the BDI architecture
I tools for encoding the system dynamics

2. agent-oriented language semantics
I syntax & model of execution
I loosely corresponds to temporal modal logics

3. means to tackle the pro-activity vs. reactivity problem
I deliberation/planning vs. handling events & interruptions
 hybrid architectures

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 26/43

Agent-oriented programming
Agent programming languagesHistorical overview

Hybrid architectures: – incomplete –
1987: PRS (Georgeff and Lansky)
1988: IRMA (Bratman, Israel and Pollack)
1991: Abstract BDI architecture (Rao and Georgeff)
1994: INTERRAP (Müller and Pischel)

Agent-Oriented Programming Languages: – incomplete –
1990: AGENT-0 (Shoham)
1996: AgentSpeak(L) (Rao)
1996: Golog (Reiter, Levesque, Lesperance)
1997: 3APL (Hindriks et al.)
1998: ConGolog (Giacomo, Levesque, Lesperance)
2000: JACK (Busetta et al.)
2000: GOAL (Hindriks et al.)
2002: Jason (Bordini, Hubner)
2003: Jadex (Braubach, Pokahr et al.)
2008: BSM/Jazzyk (Novák)
2008: 2APL (Dastani)

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 27/43

Agent-oriented programming
Agent programming languagesThe landscape

BDI programming systems

Theoretically oriented

declarative languages built
from scratch new
syntax

clear theoretical
properties verification

declarative KR techniques

no integration with
external/legacy systems

AgentSpeak(L), 3APL,
2APL, GOAL, CAN, etc.

Engineering approaches

layer of specialised
language constructs over
a robust mainstream
programming language
(Java) code re-usability

host language semantics

KR in an imperative
language

easy integration with
external systems and
environments

JACK, Jadex

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 28/43

Agent-oriented programming
AgentSpeak(L)/JasonAgentSpeak(L)/Jason

programming language for BDI agents
notation based on logic programming
AgentSpeak(L) an abstract programming language
Jason operational semantics for AgentSpeak
incorporates Prolog for reasoning about beliefs
various pragmatic extensions like external actions (Java)
also a platform for developing multi-agent systems

provides a clean & simple implementation of agent
concepts

http://jason.sourceforge.net/

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 29/43

Agent-oriented programming
AgentSpeak(L)/JasonAgentSpeak syntax

Beliefs
represent the information available to an agent (e.g., about
the environment or other agents)

location(Object, Coordinate), at(Coordinate)

Goals
represent states of affairs the agent wants to bring about
(come to believe, when goals are used declaratively)
achievement goals: achieve a state

!write(book), !at(Coordinate)

test goals: retrieve information from the belief base
?at(location(Object, Coordinate))

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 30/43

Agent-oriented programming
AgentSpeak(L)/JasonAgentSpeak syntax (cont.)

Agent reacts to events by executing plans.

agent program = set of rules
triggering_event : context←body.

triggering event: (perceived) change/event to handle
+b, -b, +!g, -!g, +?g, -?g implicit goals!

context : circumstances in which the plan can be used
logical formula (∧,∨,¬)

body : the course of action to be used to handle the
event if the context is believed true at the time a
plan is being chosen to handle the event
 a means to an end

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 31/43

Agent-oriented programming
AgentSpeak(L)/JasonAgentSpeak mechanisms

Triggering events:
+b (add belief)
-b (delete belief)
+!g (add a-goal)
-!g (delete a-goal)
+?g (add test-goal)
-?g (delete test-goal)

Intention = stack of:
environment actions
achievement goals
test goals
internal actions
expressions
mental notes

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 32/43

Agent-oriented programming
AgentSpeak(L)/JasonAgentSpeak reasoning cycle

1. perceive the environment
I receive communication from other agents
I select ‘socially acceptable’ messages

2. update the belief base
3. select an event to handle
4. retrieve all relevant plans
5. determine the applicable plans
6. select one applicable plan
7. select an intention for further execution
8. execute one step of an intention

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 33/43

Agent-oriented programming
AgentSpeak(L)/JasonAgentSpeak interpreter

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 34/43

Agent-oriented programming
AgentSpeak(L)/JasonJason (example)

+green_patch(Rock)
: not battery_charge(low)
← ?location(Rock,Coordinates);

!at(Coordinates);
!examine(Rock).

+!at(Coords)
: not at(Coords) & safe_path(Coords)
← move_towards(Coords); !at(Coords).

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 35/43

Agent-oriented programming
AgentSpeak(L)/JasonContingency plans & failure

Contingency plans multiple rules + single triggering event:

+!at(Coords)
: not at(Coords) & safe_path(Coords)
← move_towards(Coords); !at(Coords).

+!at(Coords)
: not at(Coords) & no_safe_path(Coords) & not storm
← fly_towards(Coords); !at(Coords).

+!at(Coords)
: not at(Coords) & very_bad_weather
← ask_for_teleport(Coords);

A plan failure triggers a goal-deletion event:

-!at(Coords)
: very_bad_weather
← !wait_for_good_weather.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 36/43

Agent-oriented programming
AgentSpeak(L)/JasonContingency plans & failure

Contingency plans multiple rules + single triggering event:

+!at(Coords)
: not at(Coords) & safe_path(Coords)
← move_towards(Coords); !at(Coords).

+!at(Coords)
: not at(Coords) & no_safe_path(Coords) & not storm
← fly_towards(Coords); !at(Coords).

+!at(Coords)
: not at(Coords) & very_bad_weather
← ask_for_teleport(Coords);

A plan failure triggers a goal-deletion event:

-!at(Coords)
: very_bad_weather
← !wait_for_good_weather.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 36/43

Agent-oriented programming
AgentSpeak(L)/JasonInternal actions

Internal actions serve:
1. as a glue between Jason and external legacy code (Java)

map.get_coords(Rock, Coords),
.send(. . .), .print(. . .)

2. as a means to manually steer the deliberation cycle
.desires(. . .), .drop_desires(. . .)

+green_patch(Rock)
: ~battery_charge(low) & .desires(at(_))
← .drop_desires(at(_));

map.get_coords(Rock, Coords);
!at(Coords);
!examine(Rock).

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 37/43

Agent-oriented programming
AgentSpeak(L)/JasonMAS specification

Putting it all together:

MAS = agents + communication + environment

MAS mars_exploration_system {
/* communication infrastructure (built-in) */
infrastructure: Centralised

/* interface to the environment (Java class) */
environment: MarsEnv

/* agents in the MAS (Jason agents) */
agents: Spirit; Opportunity; Beagle2;

}

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 38/43

Agent-oriented programming
AgentSpeak(L)/JasonJason system architecture

Environment actionsLib

Agent Agent Agent

communication middleware

Platform

outer world
...

Jason interpreter

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 39/43

Conclusion

A4M33MAS/Lecture #3

Conclusion

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 40/43

ConclusionSummary

1 Motivation & basic concepts

2 Agent-oriented software engineering
Introduction
Frameworks
Tropos methodology

3 Agent-oriented programming
Introduction
Agent programming languages
AgentSpeak(L)/Jason

4 Conclusion

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 41/43

ConclusionFinal thoughts
Agent-oriented software engineering
... provides a useful view on complex distributed systems. In
the core, there is the idea of loose coupling of components
and a strong emphasis on autonomy.

Agent-oriented programming
... is just one of the ways to tackle the problem of reactivity
vs. deliberation. There are other as well: hybrid robotic
architectures, situation/fluent-calculus based approaches,
cognitive architectures, etc.

BDI architecture modelling smart robotic and
multi-robot systems

...both fields are a subject to an active on-going research, so
the story is far from over.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 42/43

ConclusionFinal thoughts
Agent-oriented software engineering
... provides a useful view on complex distributed systems. In
the core, there is the idea of loose coupling of components
and a strong emphasis on autonomy.

Agent-oriented programming
... is just one of the ways to tackle the problem of reactivity
vs. deliberation. There are other as well: hybrid robotic
architectures, situation/fluent-calculus based approaches,
cognitive architectures, etc.

BDI architecture modelling smart robotic and
multi-robot systems

...both fields are a subject to an active on-going research, so
the story is far from over.

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 42/43

ConclusionThe end

Thank you for your attention.

Questions?

Resources:

ČVUT CourseWare: A4M33MAS

http://www.troposproject.org/

http://jason.sourceforge.net/

Peter Novák · Agent Technology Center, Department of Cybernetics Czech Technical University October 12th 2010 43/43

	Introduction
	Motivation & basic concepts
	Agent-oriented software engineering
	Introduction
	Frameworks
	Tropos methodology

	Agent-oriented programming
	Introduction
	Agent programming languages
	AgentSpeak(L)/Jason

	Conclusion

