Introduction to Modal Logic Michal Pěchouček

Department of Cybernetics Czech Technical University in Prague

http://agents.felk.cvut.cz/

:: Introduction of the nodes of truth such as necessarily \Box and possibly true \Diamond .

syntax: $\forall \varphi \in \mathcal{L}_p \Rightarrow \Box \varphi, \diamondsuit \varphi \in \mathcal{L}_m$

semantics: is given by the model

- model is defined on the set of possible worlds (given by Kripke).
- model (or a knowledge base) is partitioned into several worlds and from each different information can be inferred – worlds are mutually linked by accessibility relation.
- model \mathcal{M}_1 is given by $\langle W, L, R \rangle$, where W is $\{w\}$, L is $w \to \texttt{set-of-true-formulas}$ and R is $R \subseteq W \times W$.
- We need to expand the logical inference \models into worlds \models_w .
- :: Application to reasoning about time, knowledge, obligation, permission, ...

We do not need both \Box and \diamondsuit , because

 $\Box \varphi \Leftrightarrow \neg \Diamond \neg \varphi.$

There are two basic (\mathbf{K}) axioms of modal logic:

distribution axiom:

$$\models \Box(\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Box \psi)$$

<u>Proof</u>: If in all accessible worlds the implication holds then provided that the <u>if</u> part of the implication is true in all accessible worlds then the <u>then</u> part needs to be also true in all accessible worlds.

generalization axiom:

$$\models \varphi \Rightarrow \Box \varphi$$

<u>Proof:</u> As the this is tautology (true in all possible worlds) then if $\forall w \mathcal{M}_1 \models_w \varphi$ then obviously $\forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi$.

s1 $\mathcal{M}_1 \models_w \varphi$ iff $\varphi \in \mathcal{L}_w$ **s2** $\mathcal{M}_1 \models_w \varphi \land \psi$ iff $\varphi \in \mathcal{L}_w \land \psi \in \mathcal{L}_w$ **s3** $\mathcal{M}_1 \models_w \neg \varphi$ iff $\mathcal{M}_1 \not\models_w \varphi$ **s4** $\mathcal{M}_1 \models_w \Diamond \varphi$ iff $(\exists w' : R(w, w') \land \mathcal{M}_1 \models_{w'} \varphi)$ **s5** $\mathcal{M}_1 \models_w \Box \varphi$ iff $(\forall w' : R(w, w') \Rightarrow \mathcal{M}_1 \models_{w'} \varphi)$

Accessibility Relation

- reflexive: $(\forall w : (w, w) \in R)$
- serial: $(\forall w : (\exists w' : (w, w') \in R))$
- transitive: $(\forall w_1, w_2, w_3 : (w_1, w_2) \in R \land (w_2, w_3) \in R \Rightarrow (w_1, w_3) \in R)$
- symmetric: $(\forall w_1, w_2, (w_1, w_2) \in R \Rightarrow (w_2, w_1) \in R)$
- euclidean: $(\forall w_1, w_2, w_3 : (w_1, w_2) \in R \land (w_1, w_3) \in R \Rightarrow (w_2, w_3) \in R)$

- T: $\Box \varphi \rightarrow \varphi$
- D: $\Box \varphi \rightarrow \diamondsuit \varphi$
- 4: $\Box \varphi \rightarrow \Box \Box \varphi$
- B: $\varphi \to \Box \diamondsuit \varphi$
- 5: $\Diamond \varphi \rightarrow \Box \Diamond \varphi$

 $\mathsf{T} \colon \mathsf{because} \models \varphi \Rightarrow \Box \varphi \text{ and due reflexivity } \forall w : (w,w) \in R \circledcirc$

D: $(\mathcal{M}_1 \models_w \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi)$ and due to seriality $(\mathcal{M}_1 \models_w (\exists w' : (w, w') \in R))$ we can say that $\mathcal{M}_1 \models_w \exists w'' : (w, w'') \in R : \mathcal{M}_1 \models_{w'} \varphi)$

4: provided that there is <u>transitive</u> relation on R we may say that $(\mathcal{M}_1 \models_w \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi) \Rightarrow (\mathcal{M}_1 \models_w \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} (\forall w'' : (w', w'') \in R : \mathcal{M}_1 \models_{w''} \varphi)) \odot$

B: provided that there is symmetric relation on R we say that $\mathcal{M}_1 \models_w \varphi \Rightarrow \forall w' : (w, w') \in R :$ $\mathcal{M}_1 \models_{w'} \exists w'' : (w', w'') \in R : \mathcal{M}_1 \models_{w''} \varphi$ if $(\forall w, w', (w, w') \in R \Rightarrow (w', w) \in R)$ then w = w'' and $\mathcal{M}_1 \models_w \varphi \odot$

5: $(\mathcal{M}_1 \models_w \exists w' : (w, w') \in R \models_{w'} \varphi) \Rightarrow (\mathcal{M}_1 \models_w \forall w'' : (w, w'') \in R : \mathcal{M}_1 \models_{w''} \exists w'(w'', w') \in R : \mathcal{M}_1 \models_{w'} \varphi)$ due to <u>euclidean</u> property if $(w, w') \in R \land (w, w'') \in R$ then $(w', w'') \in R \odot$ $R \odot$ • T: $\Box \varphi \rightarrow \varphi$ due to reflexivity

- $\label{eq:total_states} \mathbf{T} \colon \Box \varphi \to \varphi \qquad \qquad {\rm due \ to \ reflexivity}$
- D: $\Box \varphi \rightarrow \Diamond \varphi$ due to seriality

- T: $\Box \varphi \rightarrow \varphi$ due to reflexivity
- D: $\Box \varphi \rightarrow \Diamond \varphi$ due to seriality
- 4: $\Box \varphi \rightarrow \Box \Box \varphi$ due to transitivity

- T: $\Box \varphi \rightarrow \varphi$
- D: $\Box \varphi \rightarrow \Diamond \varphi$ due to seriality

- due to reflexivity
- 4: $\Box \varphi \rightarrow \Box \Box \varphi$ due to transitivity
- $\bullet \ \ B: \varphi \to \Box \diamondsuit \varphi \qquad \qquad {\rm due \ to \ symetricity}$

- T: $\Box \varphi \rightarrow \varphi$ due to reflexivity
- D: $\Box \varphi \rightarrow \Diamond \varphi$ due to seriality

- 4: $\Box \varphi \rightarrow \Box \Box \varphi$ due to transitivity
- $\bullet \ \mathsf{B} \colon \varphi \to \Box \diamondsuit \varphi \qquad \qquad \mathsf{due \ to \ symetricity}$
- 5: $\Diamond \varphi \rightarrow \Box \Diamond \varphi$ due to euclidean property

:: Model logic is a classical mechanism for representing and reasoning about knowledge. The subject of study of the epistemic logic.

:: An agent is said to believe φ if φ is true in all the belief-accessible situations (belief alternatives). This is why we have \Box to be equivalent to (Bel $A \varphi$), sometimes denoted as $K_i \varphi$. Agent's belief is given by \mathcal{B} – belief accessibility relation.

s1 $\mathcal{M}_4 \models_w (\mathsf{Bel} \ A \ \varphi) \text{ iff } \forall w' \ \mathcal{B}(w, w') : \mathcal{M}_4 \models'_w \varphi$

 $\mathcal B$ can capture reasoning about possible future events, about different knowledge of agents, etc.

Reasoning about Belief/Knowledge

Example 2.: poker card game - there the \mathcal{B} is interpreted as that the agent believes in what he can see – the worlds that are accessible from his own world.

Once we are implementing an agent what do we want from functions/program that will implement its beliefs:

- to satisfy the **K** axioms
- an agent knows what it does know positive introspection axiom **4** axiom.
- an agent knows what it does not know positive introspection axiom **5** axiom.
- it beliefs are not contradictory if it knows something it means it does not allow the negation of its being true – D axiom.

The \mathcal{B} relation is serial, transitive and euclidean.

:: Belief is surely a KD45 system.

Properties of Belief

:: Knowledge is more difficult – it needs to be also true – this why the knowledge accessibility relation needs to be also reflexive.

 $\models (\mathsf{Bel}\;A\;\varphi) \land \varphi \Leftrightarrow (\mathsf{Know}\;A\;\varphi)$

Therefore knowledge is a **KTD45** system.

In temporal logic we replace the accessibility relation by \prec temporal ordering relation. Properties of the relation give us two different temporal logics.

In temporal logic we replace the accessibility relation by \prec temporal ordering relation. Properties of the relation give us two different temporal logics.

• the ordering relation is not <u>reflexive</u>, symetric and <u>euclidean</u> while it is <u>serial</u> and <u>transitive</u>

In temporal logic we replace the accessibility relation by \prec temporal ordering relation. Properties of the relation give us two different temporal logics.

- the ordering relation is not <u>reflexive</u>, symetric and <u>euclidean</u> while it is <u>serial</u> and <u>transitive</u>
- this is why time logic is a KD4 type of modal logics

In temporal logic we replace the accessibility relation by \prec temporal ordering relation. Properties of the relation give us two different temporal logics.

- the ordering relation is not <u>reflexive</u>, symetric and <u>euclidean</u> while it is <u>serial</u> and <u>transitive</u>
- this is why time logic is a KD4 type of modal logics

We have

- linear temporal logics (LTL) where the time is a total ordering on the time domain
- branching time temporal logics (BTTL) where the time is a partial ordering on the situation domain

Reasoning about time

In LTP the \Box operator is replaced by G, the \diamondsuit operator is replaced by F and Besides F we need to have \backsim for <u>until</u>, P for <u>past</u> and X for <u>next</u>. The model is given by $\mathcal{M}_3 \equiv \langle \mathbf{T}, \prec, [] \rangle$. [] gives a denotion of an atomic proposition so that $L : w \in [\varphi]$ iff $\varphi \in L(w)$.

s1 $\mathcal{M}_{3} \models_{t} \mathsf{P}\varphi \text{ iff } \exists t' : t' \prec t \land \mathcal{M}_{2} \models_{t} \varphi$ **s3** $\mathcal{M}_{3} \models_{t} \mathsf{X}\varphi \text{ iff } \mathcal{M}_{2} \models_{t+1} \varphi$ **s4** $\mathcal{M}_{3} \models_{t} \varphi \curvearrowleft \psi \text{ iff } (\exists t' : t \preceq t' \land \mathcal{M}_{2} \models'_{t} \psi \land (\forall t'' : t \preceq t'' \preceq t' \Rightarrow \mathcal{M}_{2} \models''_{t} \varphi)$

we have

 $F\varphi \Leftrightarrow true \curvearrowleft \varphi,$

$$\mathsf{G}\varphi \Leftrightarrow \neg \mathsf{F}\neg \varphi,$$

Reasoning about time

In BTTL we enhance the system with the path quantifiers A and E. This is why we talk about satisfiability as $EF\varphi$ and about tautology as $AG\varphi$.

We need to introduce the concept of a path where $path(S) \rightarrow p$, so that

1. $t \in p$ 2. $\forall s_1, s_2 \in p : (s_1, s_2) \in R \lor (s_2, s_1) \in R$ 3. $\forall s_1 \in p : (s, s_1) \in R$

Then we may easily use the F and G operators to use on a path p so that $\mathsf{F}_p arphi$

s1
$$\mathcal{M}_3 \models_s \mathsf{AG}\varphi \text{ iff } \forall p : p \in path(s) : \mathcal{M}_3 \models_s \mathsf{G}_p\varphi$$

s3 $\mathcal{M}_3 \models_s \mathsf{EF}\varphi \text{ iff } \exists p : p \in path(s) : \mathcal{M}_3 \models_s \mathsf{F}_p\varphi$

The model of the language M_5 : $M_5 \equiv \langle \mathbf{S}, <, [], \mathbf{R} \rangle$

Each action α has got a specific accessibility relation R_{α} that specifies the properties of the world before applying α and the properties of the resulting world.

• we have two **achieves** type of operators:

Each action α has got a specific accessibility relation R_{α} that specifies the properties of the world before applying α and the properties of the resulting world.

• we have two **achieves** type of operators:

s1
$$\mathcal{M}_2 \models_w \langle \alpha \rangle \varphi$$
 iff $\exists w' : R_\alpha(w, w') \land \mathcal{M}_2 \models_{w'} \varphi$
s2 $\mathcal{M}_2 \models_w [\alpha] \varphi$ iff $\forall w' : R_\alpha(w, w') \land \mathcal{M}_2 \models_{w'} \varphi$

From the world of regular programs we can represent the dynamics by α; α' – followed, α|α' – or, α* – repeated more than once, φ? – test whether φ is true.

s3
$$R_{\alpha;\beta}(w, w')$$
 iff $\exists w'' : R_{\alpha}(w, w'') \land R_{\beta}(w'', w')$
s4 $R_{\alpha|\beta}(w, w')$ iff $\exists w'' : R_{\alpha}(w, w') \lor R_{\beta}(w, w')$
s5 $R_{\alpha*}(w, w')$ iff $\exists w_0, w_1, ..., w_n : w = w_0 \land w' = w_n \land (\forall i 0 \le i < n \Rightarrow R_{\alpha}(w_i, w_{i+1}))$

Example 1.: The following behavior rule can be represented in the dynamic logics by:

:: if φ then α_1 else α_2

Example 1.: The following behavior rule can be represented in the dynamic logics by:

:: if φ then α_1 else α_2 $(\varphi?; \alpha_1)|(\neg \varphi?; \alpha_2)$

:: while $\alpha \ \mathrm{do} \ \varphi$:

Example 1.: The following behavior rule can be represented in the dynamic logics by:

:: if φ then α_1 else α_2 $(\varphi?; \alpha_1)|(\neg \varphi?; \alpha_2)$

:: while α do φ : $[(\varphi?; \alpha)|(\varphi?)] *$

:: repeat α until φ :

Example 1.: The following behavior rule can be represented in the dynamic logics by:

:: if φ then α_1 else α_2 $(\varphi?; \alpha_1)|(\neg \varphi?; \alpha_2)$

:: while $\alpha \operatorname{do} \varphi$: $[(\varphi?; \alpha)|(\varphi?)] *$

:: repeat α until φ : α ; $[(\neg \varphi?; \alpha) | \varphi?] *$