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Outline of the talk:
� Compression in 1D and 2D.

� Redundance, irrelevance.

� Image compression procedure.

� Entropy and compression.

� Optimal coding.

� Predictive and transform compression.

� Digital Pulse Coding Modulation

� JPEG
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Image compression, introduction

� The aim: is reducing the amount of data needed to represent the image. The
used amount is measured, e.g. in bits.

� Usage: for data transmission or storage.

� Why does 2D compression differs from a 1D one?

� A digitized image is treated as a 2D structure (a matrix) of random samples.

� The ompression goal from the procedural point of view: The aim is to
tranform the digital image (the matrix of intensities or 3 matrices with color
components for color image) into another representation, in which the data
are less dependent statistically (roughly: less correlated).

http://cmp.felk.cvut.cz
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What makes image compression possible?

� Images are not random as noise usually is.

� Images are redundant and predictable.

� Intensities are distributed non-uniformly.

� Color channels are statistically dependent.

� Pixel values are spatially correlated.

� Human vision system does not perceive all details.

http://cmp.felk.cvut.cz
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Reading resources

� Anil Jain: “Fundamentals of Digital Image Processing”, 1989.

� M. Sonka, V. Hlaváč, R. Boyle R.: “Image Processing, Analysis, and
Machine Vision”, 2007.

� T. Svoboda, J. Kybic, V. Hlaváč: “Image Processing, Analysis, and Machine
Vision, A MATLAB Companion”, 2007.
http://visionbook.felk.cvut.cz

http://cmp.felk.cvut.cz
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Downsampling

� Reduce the size (spatial resolution) of the image.

� Lossy, simple, often appropriate (limited monitor resolution, web).

� High-quality interpolation (B-splines) helps.

http://cmp.felk.cvut.cz
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Downsampling, example (1)

Original size, 3456× 5184, 859 kB (stored as JPEG with quality 75).

http://cmp.felk.cvut.cz
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Downsampling, example (2)

Downsampled 2×, 1728× 2592, 237 kB.
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Downsampling, example (3)

Downsampled 4×, 864× 1296, 75 kB.

http://cmp.felk.cvut.cz
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Downsampling, example (4)

Downsampled 8×, 432× 648, 27 kB.

http://cmp.felk.cvut.cz
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Downsampling, example (5)

Downsampled 8×, 216× 324, 10 kB.

http://cmp.felk.cvut.cz
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Downsampling, example (6)

Downsampled 8×, 216× 324, 10 kB, bicubic interpolation.

http://cmp.felk.cvut.cz
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Downsampling, example (7)

Downsampled 16×, 108× 162, 4.2 kB.
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Downsampling, example (8)

Downsampled 16×, 108× 162, 4.2 kB, bicubic interpolation.

http://cmp.felk.cvut.cz
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Redundance, irrelevance

� Redundance in coding

• The basic principle: a less frequent data item (symbol) is coded by a
shorter code word than a more frequent one.

• Optimal coding: Huffman coding and aritmetic coding.
� Redundance among pixels, it is modeled and only residuum to the model is
coded because it exhibits a smaller variance. Different models, e.g.:

• Linear integral transfors, e.g., Fourier, cosine, wavelets.

• Predictive compression, e.g. a linear combination of a few preceding
values.

• Data-saving image generating models, e.g. fractals.
� Irrelevance from the human perception point of view

• E.g. some intensity levels, color or frequencies (typically high
frequencies) are not represented.

http://cmp.felk.cvut.cz
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Taxomonmy of image compression methods

1. Based on data interpretation ⇒ image segmentation is needed.

� Methods are dependent on data semantics.

� Higher compression ratios are achieved.

� Decompression does not reconstruct the input image fully.

2. Without data interpretation ⇒ redundant and irrelevant information is
removed.

� Compression can be used for any image, regardless of its semantics.

� Statistical redundancy and (possibly) irrelevance for human viewing is
explored.

http://cmp.felk.cvut.cz
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Image compression and its backward
reconstruction

transformation
y = T(x)

image x

samples y

quantizing
q = Q(y)

coding
c =C(q)

indices q

indices q

sequence of
bits c

decoding
-1

q = C (c)

undo
quantizing

-1y = Q (q)^

reconstructed
image x̂

samples ŷ

inverse
transformation

-1
x = T (y)^ ^

� Transformation T reduces
redundance and is often invertible.
E.g., cosine transformation, run
length encoding (RLE).

� Quantizing Q removes irrelevance
and is not invertible.
E.g., neglecting cosine
transformation coefficient matching
to high frequencies.

� Coding C and decoding C−1 are
invertible and lossless.

http://cmp.felk.cvut.cz
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Information theory and redundance

Entropy in physics (thermodynamics) estimates the energy of the system
available to perform work. The work can be estimated from the “order in a
system”. The entropy is a measure of disorderliness in a system. There is a
relation to the second thermodynamic theorem.

The concept was introduced by a German physicist Rudolf Clausius (1822-1888,
one of thermodynamics founders) in 1850.

Entropy in information theory, Claude Shannon, 1948

He = −
∑
i

pi log2 pi [bits] ,

where pi is the probability of i-th symbol occurrence in the message.

http://cmp.felk.cvut.cz
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Entropy, two examples

Let only two symbols a, b occur in the message.

Example 1

p(a) = p(b) = 1
2

H = −
(
1

2
log2

1

2
+

1

2
log2

1

2

)
=

(
1

2
· 1 + 1

2
· 1
)

= 1

Example 2

p(a) = 0, 99; p(b) = 0, 01

H = − (0, 99 log2 0, 99 + 0, 01 log2 0, 01)

= − (0.99 · (−0, 0145) + 0, 01 · (−6, 6439))
= 0, 0144 + 0, 0664 = 0, 0808

http://cmp.felk.cvut.cz
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Entropy and a grayscale image

Let the image has G gray levels, k = 0 . . . G− 1 with the probability P (k).

Entropy He = −
∑
k

P (k) log2 P (k) [bits] ,

Le b be the minimal number of bits, which can represent the used number of
quatization levels.

Information redundance r = b−He .

http://cmp.felk.cvut.cz
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Estimate of the entropy from the image
histogram

Image has a histogram h(k), 0 ≤ k ≤ 2b − 1. M , N are image sizes.

The estimate of the probability P̂ =
h(k)

M N
.

The estimate of the entropy Ĥe = −
2b−1∑
k

P̂ (k) log2 P̂ (k) [bits]

Note:

The entropy estimate is overoptimistic. The entropy is lower in reality because
there are statistical interdependencies among pixels (redundance).

http://cmp.felk.cvut.cz
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Illustration of the inter-pixel redundance

Histogram

Normalized
autocorrelation

http://cmp.felk.cvut.cz
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Three definition of the compression ratio

The definition is based on

1. redundance (measured by entropy) K = b
Ĥe

2. memory saving

κ =
n1

n2
=

length of the message before compression
length of the message after compression

3. relative memory saving R = 1− 1
κ

Example 1: n1 = n2 ⇒ κ = 1, R = 0.

Example 2: n1 : n2 = 10 : 1 ⇒ κ = 10, R = 0, 9 = 90%.

http://cmp.felk.cvut.cz
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Measurement of the compression loss

u1, . . . , un is the input sequence and
u′1, . . . , u

′
n is the lossy compressed sequence.

� Mean Square Error (MSE)

MSE =
1

n

n∑
i=1

(ui − u′i)
2

� Signal to noise ratio (SNR)

SNR = 10 log10
P 2

MSE2 [dB] ,

where P is the interval of input sequence values,
P = max{u1, . . . , un} - min{u1, . . . , un}.

http://cmp.felk.cvut.cz
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Measurement of the compression loss (2)

� Peak-signal to noise ratio (PSNR)

PSNR = 10 log10
M2

MSE2 ,

where M is the maximal interval of input sequence values, e.g. 256 for 8 bit
range and 65356 for 16 bit range.

SNR and PSNR are used mainly in applications. The expression for MSE serves
as an auxiliary value for the SNR and PSNR definitions.

http://cmp.felk.cvut.cz
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Huffman coding, from the year 1952

� Input: a message, i.e. symbols with the probability of their occurrence.

� Output: the optimally coded message.

� Procedure: the binary (Huffman) tree is created in a bottom-up manner
based on the probability of symbols occurrence. This tree serves for message
encoding.

� Prefix code, i.e. no code word can be a prefix of any other code word. It
allows decoding without knowing the length of individual words
corresponding to coded symbols.

� An integer number of bits per coded symbol.

� Let b be the average number of bits per symbol. Let L be the average
length of a coded word.

H(b) ≤ L ≤ H(b) + 1

http://cmp.felk.cvut.cz
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Huffman coding, example

Input: messages are composed of 8 symbols with the known probability of
occurrence.

s0 s1 s2 s3 s4 s5 s6 s7
0.12 0.26 0.3 0.15 0.1 0.03 0.02 0.02

s  = 7
7

s  = 6
6

s  = 5
5

s  = 0
0

s  = 4
4

s  = 3
3

s  = 1
1

s  = 2
2

0.02

0.02

0.03

0.1

0.12

0.15

0.26

0.3

http://cmp.felk.cvut.cz
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Huffman coding, example

Input: messages are composed of 8 symbols with the known probability of
occurrence.

s0 s1 s2 s3 s4 s5 s6 s7
0.12 0.26 0.3 0.15 0.1 0.03 0.02 0.02

s  = 7
7

s  = 6
6

s  = 5
5

s  = 0
0

s  = 4
4

s  = 3
3

s  = 1
1

s  = 2
2

0.02

0.02

0.03

0.1

0.12

0.15

0.26

0.3

0.04

http://cmp.felk.cvut.cz
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Huffman coding, example

Input: messages are composed of 8 symbols with the known probability of
occurrence.

s0 s1 s2 s3 s4 s5 s6 s7
0.12 0.26 0.3 0.15 0.1 0.03 0.02 0.02

s  = 7
7

s  = 6
6

s  = 5
5

s  = 0
0

s  = 4
4

s  = 3
3

s  = 1
1

s  = 2
2

0.02

0.02

0.03

0.1

0.12

0.15

0.26

0.3

0.04

0.07
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Huffman coding, example

Input: messages are composed of 8 symbols with the known probability of
occurrence.

s0 s1 s2 s3 s4 s5 s6 s7
0.12 0.26 0.3 0.15 0.1 0.03 0.02 0.02

s  = 7
7

s  = 6
6

s  = 5
5

s  = 0
0

s  = 4
4

s  = 3
3

s  = 1
1

s  = 2
2

0.02

0.02

0.03

0.1

0.12

0.15

0.26

0.3

0.04

0.07

0.17
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Huffman coding, example

Input: messages are composed of 8 symbols with the known probability of
occurrence.

s0 s1 s2 s3 s4 s5 s6 s7
0.12 0.26 0.3 0.15 0.1 0.03 0.02 0.02

s  = 77

s  = 66

s  = 55

s  = 00

s  = 44

s  = 33

s  = 11

s  = 22

0.02

0.02

0.03

0.1

0.12

0.15

0.26

0.3

0.04

0.07

0.17

0.27

http://cmp.felk.cvut.cz
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Huffman coding, example

Input: messages are composed of 8 symbols with the known probability of
occurrence.

s0 s1 s2 s3 s4 s5 s6 s7
0.12 0.26 0.3 0.15 0.1 0.03 0.02 0.02

s  = 77

s  = 66

s  = 55

s  = 00

s  = 44

s  = 33

s  = 11

s  = 22

0.02

0.02

0.03

0.1

0.12

0.15

0.26

0.3

0.04

0.07

0.17

0.43
0.27

http://cmp.felk.cvut.cz
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Huffman coding, example

Input: messages are composed of 8 symbols with the known probability of
occurrence.

s0 s1 s2 s3 s4 s5 s6 s7
0.12 0.26 0.3 0.15 0.1 0.03 0.02 0.02

s  = 7
7

s  = 6
6

s  = 5
5

s  = 0
0

s  = 4
4

s  = 3
3

s  = 1
1

s  = 2
2

0.02

0.02

0.03

0.1

0.12

0.15

0.26

0.3

0.04

0.07

0.17

0.43
0.27

0.57
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Huffman coding, example

Input: messages are composed of 8 symbols with the known probability of
occurrence.

s0 s1 s2 s3 s4 s5 s6 s7
0.12 0.26 0.3 0.15 0.1 0.03 0.02 0.02

s  = 7
7

s  = 6
6

s  = 5
5

s  = 0
0

s  = 4
4

s  = 3
3

s  = 1
1

s  = 2
2

0.02

0.02

0.03

0.1

0.12

0.15

0.26

0.3

0.04

0.07

0.17

0.43
0.27

0.57

1.0
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Huffman coding, example
re-ordering of the tree

� Reordering is needed to have the tree without crossing branches.

� Coding: either 0 or 1 at branching points.

Coding/decoding

110000011010
{ { { { {

4 0 2 1 1

http://cmp.felk.cvut.cz
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Coding of segmented data (1)

Coding of region boundaries

Polygonal approximation of the boundary.

http://cmp.felk.cvut.cz
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Coding of segmented data (2)

Coding of region boundaries

Chain (also Freeman, 1961) code, 4-neighborhood

3

2

1

0

Chain code: 3, 0, 0, 3, 0, 1, 1, 2, 1, 2, 3, 2.

Code derivative: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1.

http://cmp.felk.cvut.cz
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Coding of segmented data (3)

Coding of region boundaries

Chain (also Freeman) code, 8-neighborhood

2
3

4

5 7

0

1

6

Kód: 00077665555556600000006444444442221111112234445652211

http://cmp.felk.cvut.cz
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Coding of segmented data (4)

Region coding

Run Length Encoding (RLE)
6543210

0

1

2

3

4

5

6

The code is composed of a list of lists. Each list represents the situation in a
single line. RLE is used by FAX (CCITT Group 3).

((11144)(214)(52355))

http://cmp.felk.cvut.cz
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Predictive compression – the idea

� The idea is to find a mathematical model, which allows predicting the pixel
value from several values in a local neighborhood.

� The difference (prediction error) between the correct and the predicted value
for each pixel and a few model parameters for the entire image are
stored/transmitted.

� A compression occurs because the prediction error exhibits lower statistical
variation (e.g., its variance) than the original data.

+

+

+
-

(a)

Quantizer

Predictor Predictor

(b)

+
+

d(i,j) f(i,j)d(i,j)f(i,j)

http://cmp.felk.cvut.cz
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Digital pulse coding modulation (1)

� Let f(i, j) be the image. Statistical dependencies in the image are estimated
using the autocorrelation function R(i, j, k, l) = E(f(i, j) f(k, l)) = f f>.

� The mathematical model of a predictor f̂(i, j) is sought.

� The prediction error is d(i, j) = f̂(i, j)− f(i, j).

� Let assume, e.g., a simple linear predictor of the third order

f̂(i, j) = a1 f(i, j − 1) + a2 f(i− 1, j − 1) + a3 f(i− 1, j) ,

where a1, a2, a3 are its parameters.

f(i,j)

f(i-1,j)f(i-1,j-1)

f(i,j-1)

http://cmp.felk.cvut.cz
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Digital pulse coding modulation (2)

� How are the parameters a1, a2, a3 of the predictive model going to be
estimated?

� By solving a statistical optimization task. The stationary random process f
with zero mean value is assumed,

e = E
(
[f̃(i, j)− f(i, j)]2

)
,

as well as the predictor of the third order,

a1R(0, 0) + a2R(0, 1) + a3R(1, 1) = R(1, 0)

a1R(0, 1) + a2R(0, 0) + a3R(1, 0) = R(1, 1)

a1R(1, 1) + a2R(1, 0) + a3R(0, 0) = R(0, 1)

where R(m,n) is the autocorrelation function of a special form
R(α, β) = R(0, 0) exp(−c1α− c2β).

http://cmp.felk.cvut.cz
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DPCM – example, K = 3.8

After reconstruction K = 3.8. Predictor error.

http://cmp.felk.cvut.cz
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DPCM – example, K = 6.2

After reconstruction K = 6.2. Predictor error.

http://cmp.felk.cvut.cz
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JPEG, introduction

� JPEG (Joint Photographic Expert Group) was standardized in the year 1992.

� JPEG is used both for gray level and color images. Color images are first
converted from the RGB color space to YUV color space, in which the U , V
matrices are stored with the half resolution of the matrix Y (≈ image
intensity).

� There is both lossless and lossy compression in JPEG working on different
principles.

� The first generation of JPEG (.jpg) from 1992 uses discrete cosine
transformation (DCT) to remove redundance a irrelevance applied in 8× 8

neighborhoods. DCT coefficients are converted to a 1D vector, are Run
Length Encoded (RLE) and coded optimally by Huffman coding.

� The second generation JPEG2000 (.jp2) from the year 2000 removed
redundance and irrelevance using the wavelet transform. Coding is
performed in individual bit planes separately using the arithmetic coding.

http://cmp.felk.cvut.cz
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Why DCT was used in JPEG?

� DCT is periodic implicitly. No troubles with discontinuities occur.

� DCT apporximates PCA (Principal Component Analysis, Karhunen-Loeve
expansion), which is optimal from the mean square error (MSE, energy)
point of view.

� DCT has fixed basis functions. In the PCA case, the basis functions need to
be calculated for each image again and again.

� The image is divided into non-overlapping blocks of the size 8 × 8. The
data in each block are compressed independently each of the other.

http://cmp.felk.cvut.cz
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DCT, basis functions

64 fixed basis functions are used.

� Each block of the image of the size 8
× 8 is expressed as a linear
combination of basis functions.

� While compressing, 64 weights of
linear combinations are calculated.

� Weights are thresholded. The
threshold value provides the degree
of compression, i.e. selects desired
irrelevance.

DCT2 base for [8x8] block

http://cmp.felk.cvut.cz
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Example, cameraman

image block

185 187 184 183 189 186 185 186

185 184 186 190 187 186 189 191

186 187 187 188 190 185 189 191

186 189 189 189 193 193 193 195

185 190 188 193 199 198 189 184

191 187 162 156 116  30  15  14

168 102  49  22  15  11  10  10

 25  19  19  26  17  11  10  10

image intensities

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

http://cmp.felk.cvut.cz
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Example, cameraman, DCT

185 187 184 183 189 186 185 186

185 184 186 190 187 186 189 191

186 187 187 188 190 185 189 191

186 189 189 189 193 193 193 195

185 190 188 193 199 198 189 184

191 187 162 156 116  30  15  14

168 102  49  22  15  11  10  10

 25  19  19  26  17  11  10  10

image intensities

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1117 114  10   7  19  −2  −7   2

459 −119 −20 −11 −16  −4   3   0

−267  −3  24   8   1   6   4  −1

 50 107  −9  −1  11  −6  −7   3

 52 −111 −22  −2 −16  −2   5  −3

−38  39  46  19   2   0   4   3

−17  39 −46 −26   8  −5 −10   2

 30 −46  28  22  −9   2   7  −1

coefficients of the DCT2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
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Example, cameraman, 100 % a 50 %

100 % of most significant DCT2 coeffs  50 % of most significant DCT2 coeffs

http://cmp.felk.cvut.cz
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Example, cameraman, 20 % a 5 %

 20 % of most significant DCT2 coeffs   5 % of most significant DCT2 coeffs

http://cmp.felk.cvut.cz
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JPEG – example, K = 3.8

After reconstruction K = 3.8. Predictor error.

http://cmp.felk.cvut.cz


52/54
JPEG – example, K = 4.2

After reconstruction K = 4.2. Predictor error.

http://cmp.felk.cvut.cz
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JPEG – example, K = 5.6

After reconstruction K = 5.6. Predictor error.

http://cmp.felk.cvut.cz
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JPEG – example, K = 10.2

After reconstruction K = 10.2. Predictor error.

http://cmp.felk.cvut.cz
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