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LECTURE PLAN
1. Problems in describing objects in images mathematically.

2. A taxonomy of image/objects descriptions.

3. Simple 2D object descriptors (region-based, boundary-based).

4. Matching region of interest.
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Computer vision is hard

� Many pictures are difficult to interpret.

� A large part of the brain is devoted to vision.

� ≈ 50 years of research in computer vision and we are still nowhere near
a solution.

Problems in describing objects in images mathematically:

� Ill-definedness.

� Ill-posedness.

� Intractability.
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Ill-definedness

� Scene models used in general recovery tasks are not fully defined.

• ‘Piesewise’ simple means nothing unless we impose a lower bound
on the piece sizes.

• ‘Noise’ is not easy to model (or to distinguish from the ‘signal’);
Noise is often not Gaussian!

� Many object classes easily recognizable by humans do not have simple
definitions (As chairs, bushes, dogs, . . . )
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Functional description, categorization
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H. Bülthof’s counterexample
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Functional description, issues

Domain

� Suitable for man-made objects.

Problems

� Function is often difficult to extract.

� Mapping shape to function.

� Even shape is difficult to extract.
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Ill-posedness

� Recovery problems are usually underconstrained – e.g., ambiguity of
illumination / photometry / geometry.

� (Questionable) approach – add constraints, e.g.,

• smoothness (regularization),

• minimal description length principle.

• Critique: the actual scene may not satisfy the constraints!
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Intractability

� Recovery and recognition tasks are of combinatorial complexity.

� Parallelism can speed up the early stages of the vision process (e.g.,
image operations). However, a little is known about how to speed up
the potentially combinatorial stages.

� Applications force us to solve vision problems in real time with
inadequate algorithmic/computational resources
⇒ suboptimality.
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What can be done?

� Define your domain! Work in a domain that can be adequate (e.g.,
specialized). Explore semantics of the domain.

� Improve inputs,

• Sensory redundancy (multisensor fusion, active vision).

• Processing redundancy (consensus).

� Take your time. Use adequate computational resources.
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A taxonomy of image/objects descriptions

� Object detection and recognition, i.e., the pattern recognition
approach. Shape is difficult to express mathematically.

� Alignment (≈ correspondence problem).

� Invariants.

� Decomposition into parts (expressing structure, relational graph).

� Functional description.
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Four possibilities
Description (local/global) vs. entire image/object

Image Object

Global

descr.

� Fourier transform (or other
linear integral transform).

� Principal component analysis.
� No matching of individual
shapes.

� Matching of a single, whole,
object.

� Features: simple descriptors,
moments, . . .

� Drawbacks: perfect segmen-
tation needed, sensitive to
noise and occlusion.

Local

descr.

Deliberately empty.

� No object segmentation
needed.

� Matching is based on local
descriptors.

� Features: interest points,
corners, local structures,
curvature.
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Region identification, formulation

Called also connected component labeling

Input – binary image where all object’ pixels = 1 and background pixels =
0.

Output – each region (connected component) has an unique label.

Two algorithms

1. Two passes algorithm.

2. Recursive filling of regions.
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Connected components labeling
2 passes algorithm

Pass 1: identifies # of connected components based shifting a mask
checking local neighborhood.

Pass 2: resolves label conflicts which are not seen locally.

4-neigborhood
mask

8-neghborhood
mask

conflict of labels
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Simple 2D object descriptors

2 basic approaches to describe a region

� Region-based.

� Boundary-based.

• Straight lines (chain codes, polylines).

• Curved lines (circles, elipses, 2D polynomials, B-splines).

• Ψ-S description, bending energy, chord distribution.

• Fourier transform of boundaries.
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Simple region descriptors

Area = # of pixels.
If the resolution increases while capturing the image then the area
converges to the correct value.
If real area (e.g., in m2) is sought then multiplication with the
appropriate normalization constant is needed.

Perimeter = # of boundary pixels.
Compensation for 8-neighborhood shortening possible,

√
2 instead of 2.

To be explained with chain code.
If the resolution increases while capturing the image then the perimeter
converges to ∞. How long is the coastline of Britain?
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Compactness

compactness =
(region boundary length)2

area

compact non-compact

Called also circularity in the literature.
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Eccentricity

The simplest eccentricity characteristic is the ratio of the length of the
maximum chord A to the maximum chord B which is perpendicular to A
(the ratio of major and minor axes of an object).

B

A
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Elongatedness

The elongatedness is the ratio between the length and width of the region
bounding rectangle of minimal area.

The minimal bounding rectangle is located by turning bounding rectangle in
discrete steps until a minimum is located.

a

b

suitable not suitable
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Rectangularity

� Consider the region and its bounding rectangle in orientation k in
several discrete steps, e.g., k ∈ {0o, 15o, 30o, 45o, . . . , 90o}.

� Fk = area of the region
area of the bounding rectangle in orientation k

� rectangularity = max
k

Fk

0
o

15
o

30
o

45
o
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Moments

� Let f(x, y) be a gray scale (continuous) image containing a single
object.

� The object is uniquely described by an infinite sequence of moments
mpq,

mpq =

∞∫
−∞

∞∫
−∞

xpyq f(x, y) dxdy .

� A discrete version is needed in a digital image f(i, j),

mpq =
∞∑

i=−∞

∞∑
j=−∞

ipjq f(i, j) .
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Moment invariants

While describing an object globally in the image, the invariance to various
transformations is often needed, e.g., to

� Translation (central moments).

� Scale.

� Rotation.

� Reflection.
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Central moments

� The aim is to achieve invariance to translation.

� Center of gravity xc, yc of an object: xc = m10/m00, yc = m01/m00.

� Central moments

µpq =

∞∫
−∞

∞∫
−∞

(x− xc)p (y − yc)q f(x, y) dxdy

µpq =
∞∑

i=−∞

∞∑
j=−∞

(i− xc)p (j − yc)q f(i, j)
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Moment invariants under translation
Central moments

µ00 = m00 = µ

µ10 = µ10 = 0

µ20 = m20 − µx2
c

µ11 = m11 − µxc yc
µ02 = m02 − µxc yc
µ30 = m30 − 3m20 xc + 2µx3

c

µ21 = m21 −m20 yc − 2m11 xc + 2µx2
c yc

µ12 = m12 −m02 xc − 2m11 yc + 2µxc y2
c

µ03 = m03 − 3m02 yc + 2µ y3
c

Object spread or size S = µ02 + µ20
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Moment use example: Object orientation

Orientation angle Θ =
1
2

arctan
(

2µ11

µ20 − µ02

)

y

x

x’y’

Θ
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Moment invariants under scaling

A uniform scaling by a factor α is assumed.

ηp,q =
µp,q

α(p+q+2)

µ
(p+q+2)

2
0,0
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Moment invariants
under translation, rotation, scale

ϕ1 = µ20 + µ02

ϕ2 = (µ20 − µ02)2 + 4µ2
11

ϕ3 = (µ30 − 3µ12)2 + (3µ21 − µ03)2

ϕ4 = (µ30 + µ12)2 + (µ21 − µ03)2

ϕ5 = (µ30 − 3µ12) + (µ30 + µ12)
(
(µ30 + µ12)2 − 3 (µ21 + µ03)2

)
+ (3µ21 − µ03) + (µ21 − µ03)

(
3 (µ30 + µ12)2 − (µ21 + µ03)2

)
ϕ6 = (µ20 − µ02)

(
(µ30 + µ12)2 − (µ21 + µ03)2

)
+ 4µ11 (µ30 + µ12)(µ21 + µ03)

In addition, invariant under reflection symmetry

ϕ7 = (3µ21 − µ03)(µ30 + µ12)
(
(µ30 + µ12)2 − 3 (µ21 + µ03)2

)
+ (µ30 − 3µ12)(µ30 + µ12)

(
3 (µ30 + µ12)2 − (µ21 + µ03)2

)
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Border-based descriptors

� Chain code.

� Fourier descriptors.

� Chord distribution.

� B-splines.
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Chain code (1)

Chain (also Freeman) code, 4-neighborhood

3

2

1

0

Chain code: 3, 0, 0, 3, 0, 1, 1, 2, 1, 2, 3, 2.

Derivative: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1.
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Chain code (2)

Chain code, 8-neighborhood

2
3

4

5 7

0

1

6

Code: 00077665555556600000006444444442221111112234445652211
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Curve length or region boundary perimeter from
a chain code

4-neighborhood chain code: Curve length = # of chain codes.

8-neighborhood chain code: Curve length = # of even chain codes +
√

2
(# of odd chain codes).

Naturally, 4-neighborhood length > 8-neighborhood length.
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Fourier descriptors

� Preprocessing: to express the boundary pixels as a
sequence of complex numbers

s(k) = x(k) + jy(k) , k = 0, 1, . . . ,K − 1 , k =
√
−1 .

� The Discrete Fourier Transform (DFT) of this complex
sequence is

z(u) =
1
K

K−1∑
k=0

s(k) exp
(
−jxuk
K

)
, u = 1, . . . ,K − 1 .

� There is a transformation to achieve invariance to scale,
rotation (and translation).

c(u− 2) =
z(u)
z(1)

, u = 2, 3, . . . ,K − 1 .
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Invariance of Fourier descriptors

Rotation Θ affects all coefficients by the some constant,

s(k) ejΘ⇔ z(u) ejΘ .

Translation ∆ affects zero-th coefficient only,

s(k) + ∆⇔ z(u) + ∆ δ(u) .

Scaling by α affects all coefficients by the same constant,

α s(k)⇔ α z(u) .

Shift of a starting point by k0 affects the phase only,

s(k − k0)⇔ z(u) exp
(
−2πj

k0u

K

)
.
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Chord distribution (1)

� Distribution of lengths and angles of all chords on a contour may be
used for shape description.

(a) (b)

Θ

∆

∆

x

y

r

� b(x, y) = 1 contour pixels; b(x, y) = 0 other pixels.

� Chord distribution
h(∆x,∆y) =

∑
i

∑
j

b(i, j) b(i+ ∆x, j + ∆y).
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Chord distribution (2)

(a) (b)

Θ

∆

∆

x

y

r

� Radial distribution hr(r) =
π/2∫
−π/2

h(∆x,∆y) r d θ,

where r =
√

∆x2 + ∆y2, θ = sin−1
(

∆y
r

)
.

� Angular distribution ha(θ) =
max(r)∫

0

h(∆x,∆y) d r.

� Combination of hr(r) and ha(θ) is a robust shape descriptor.
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Example – structural description of a chromosome

b

d

b

b

d

b

a

b

c a

c d

b

a

b

b

c

b

a

� Structural description of chromosomes by a chain of boundary segments

� Code word: d, b, a, b, c, b, a, b, d, b, a, b, c, b, a, b.
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B-spline representation

� B-splines are piecewise polynomial approximation curves.

� B-splines are given by a control polygon.

� A curve is represented by control points.

� B-splines of the third-order are the most common (cope with the
curvature change).

� Endpoints fixed by two control points.

� Shape controlled by two control points.
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B-spline representation

n n    = 1   = 3

(a)

   = 2n   = 3n

(b)

(c) (d)

A spline curve is always positioned inside a convex n+ 1-polygon for a
B-spline of the nth order.
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B-spline (continued)

� Let xi, i = 1, . . . , n be points of a B-spline interpolation curve x(s).

� The parameter s changes linearly between points xi. That is, xi = x(i).

� B-splines x(s) =
n+1∑
i=0

viBi(s), where

• vi are control points of a control polygon.

• n points xi ⇒ n+ 2 points vi.

• Bi(s) are base functions.

� The start point v0 and the end point vn+1 are constrained by binding
conditions. If the curvature to be zero at the curve start and the curve
end then

v0 = 2 v1 − v2

vn+1 = 2 vn − vn−1

http://cmp.felk.cvut.cz
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B-spline base functions

C0(t) =
t3

6

C1(t) =
−3t3 + 3t2 + 3t+ 1

6

C2(t) =
3t3 − 6t2 + 4

6

C3(t) =
−t3 + 3t2 − 3t+ 1

6

x(s) = Ci−1,3(s)vi−1 + Ci,2(s)vi

+ Ci+1,1(s)vi+1 + Ci+2,0(s)vi+2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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B−spline base functions

t

c0
, c

1,
 c

2,
 c

3

c2 

c0 c1 

c3 

� Base functions are non-negative.

� Shape of base functions induces
only their local influence to
the shape of the approximated
function.
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Region of interest, matching

Matching (color) histograms is common, e.g., in tracking.

Let h(q) be a histogram of gray levels qi, 0 ≤ i ≤ L.

Histogram features

� Mean =
L∑
0
qih(qi).

� Energy =
L∑
0

(h(qi))2.

� Entropy =
L∑
0
h(qi) log2 h(qi).

http://cmp.felk.cvut.cz
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