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Edges - what for?

� It follows from neurophysiological and psychophysical studies that image
points with high gradient attract attention.

� Such places carry more information.

� Edges often exhibit fair invariance to changes in illumination and/or
viewpoint change.

� Edge detection is often a first step in computer vision algorithms: image
recognition, 3D reconstruction, correspondence matching in stereo vision,
tracking, etc.
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Example: Painting

Pablo Picasso, La Sieste 1919
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How do edges occur?

Edges are the result of discontinuities in the surface normal, in depth or in
reflectance; they also appear due to highligts or irregularities in illumination
(shadows).

surface color/texture

shadow/illumination discontinuity

highlights

surface normal discontinuity

depth discontinuity
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Edges and edgels

Edge

� is computed from gradient at a point. It shares its magnitude and its
direction is 90 degrees away from it. It is a 2-dimensional vector.

Edgel

� is a pixel with an edge.
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Categories of Edge Detectors

Detectors based on:

1. finding maxima of first derivatives (Roberts, Prewitt, Sobel etc, Canny);

2. finding zero-crossing of second derivatives (Marr-Hildreth);

3. local approximation of image function by parametric model, e.g. a
polynomial in x, y (Haralick).
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Image Gradient

� Generally, the gradient of smooth function f of n variables is a vector of
partial derivatives:

∇f(x1, . . . , xn) =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
� For n = 1 (1D signal) it is equal to a (standard) derivative

� For n = 2 (2D signal) it’s a 2D vector which can be described by polar
coordinates (magnitude and angular direction ψ)

‖∇f(x, y)‖ =

√(
∂f

∂x

)2

+
(
∂f

∂y

)2

, ψ = arctan
(
∂f

∂y
/
∂f

∂x

)
.

� Directional derivative of f(x, y) in direction (u, v) is
(u, v) · ∇f(x, y) = u ∂f∂x + v ∂f∂y .
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Discrete approximation of gradient

Can be done by either of these two ways (with similar results)

� reconstruct the continuous function from the discrete one and compute its
derivative

� approximate the derivative by finite differences

Finite differences:

� non-symmetric: f ′(i) ≈ f(i)− f(i− 1). (left difference, does not use pixel
value f(i+ 1))

� symmetric: f ′(i) ≈ 1
2(f(i+ 1)− f(i− 1)) (O.K. but does not use f(i))

� This can be done by convolution: f ′ ≈ [−1,+1] ∗ f ,
f ≈ [−0.5, 0,+0.5] ∗ f .
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Derivatives are susceptible to noise

image profile with noise

its derivative

Where is the edge?
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→ smooth it with a Gaussian
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Smoothing and derivative, combined

Due to commutativity of derivative and convolution, the two ops can be
interchanged. Due to associativity, both operations can be combined to a single
operator:

d
dx

(h ∗ f) =
dh
dx
∗ f .
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Edges and object boundaries

� Edges are sometimes chained in order to form object boundaries. This is why
edge direction Φ is defined perpendicular to gradient direction Ψ.

� Provided that the object is separated from background by its image intensity,
the boundaries are exactly the pixels with high magnitude of gradient.

èerná 0

bílá 255

gradient �
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Convolution masks 3× 3 for a derivative

� Roberts (only 2× 2)

� Prewitt

� Sobel

� Robinson

� Kirsch

� Laplace (approximates trace of Hessian of image function)
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Roberts (2× 2)

Two masks:
h1 =

[
1 0
0 −1

]
, h2 =

[
0 1
−1 0

]
.

Magnitude of gradient computed as:

‖g(x, y)− g(x+ 1, y + 1), g(x, y + 1)− g(x+ 1, y)‖ .

Sensitive to noise (small neighbourhood used only).
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Prewitt

h1 =

 1 1 1
0 0 0
−1 −1 −1

 , h2 =

 0 1 1
−1 0 1
−1 −1 0

 ,

h3 =

 −1 0 1
−1 0 1
−1 0 1

 , . . .
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Example, Prewitt
derivative in horizontal direction

original 256× 256 derivative derivative, thresholded
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Example, Prewitt
derivative in vertical direction

original 256× 256 derivative derivative, thresholded
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Sobel

h1 =

 1 2 1
0 0 0
−1 −2 −1

 , h2 =

 0 1 2
−1 0 1
−2 −1 0

 ,

h3 =

 −1 0 1
−2 0 2
−1 0 1

 , . . .
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Laplacian

Image function f(x, y), its Laplacian is:

∇2 f(x, y) =
∂2f(x, y)
∂x2

+
∂2f(x, y)
∂y2

� ∇2f is a scalar, not a vector. There is no “direction” provided.

� The Laplace oprator is rotation-invariant.

� For a monotonically increasing image function f(x, y), Laplacian crosses
zero at a place where the gradient ‖∇ f(x, y)‖ is maximum.

http://cmp.felk.cvut.cz


20/35
Discrete approximation of Laplacian

� Second finite difference is computed from first finite differences:

d2

dx2
≈ [−1,+1] ∗ [−1,+1] = [+1,−2,+1]

� Laplacian is the sum of finite differences in horizontal and vertical directions:

∇2 ≈

 0 0 0
1 −2 1
0 0 0

+

 0 1 0
0 −2 0
0 1 0

 =

 0 1 0
1 −4 1
0 1 0


� Alternatives: 1 1 1

1 −8 1
1 1 1

 ,

 2 −1 2
−1 −4 −1

2 −1 2

 ,

 −1 2 −1
2 −4 2
−1 2 −1
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Sharpening by a Laplacian

Laplacian is a high-pass filter.

original 256× 256 Laplacian Sharpening (- 0,4 ·)
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Laplacian of Gaussian (=Laplace of smoothed
image)

Laplacian ∇2 is even more sensitive to noise than gradient. Thus, it is again
combined with a Gaussian G. Again, the two operators can be combined to one
→ LoG (Laplacian of Gaussian).

∇2(G ∗ f) = (∇2G) ∗ f = LoG(f)

For a given σ, (subst. x2 + y2 = r2):

G(r) = e
− r2

2σ2 , G′(r) = − 1
σ2
r e
− r2

2σ2 , G′′(r) =
1
σ2

(
r2

σ2
− 1
)
e
− r2

2σ2 .

(c is normalization constant)

∇2G(x, y) = c

(
x2 + y2 − σ2

σ4

)
e
−x

2+y2

2σ2 .
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2D operators

Gaussian Derivative of Gaussian Laplace of Gaussian (LoG)
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How to evaluate zero crossings?

� E.g. in 2× 2 neighbourhood; one pixel is a reference one and zero crossing
is detected if sign is changed in the window.
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Zero crossings: example

Original DoG σ1 = 0, 1 σ2 = 0, 09 Zero crossings
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additional edge strength thresholding

zero crossings after weak edge removal, LoG, σ = 0, 2
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LoG & physiology

� Circular receptive fields (center-surround)
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Canny edge detector

� A simple detector addressing the shortcomings of majority of (even simpler)
detectors

Algorithm:

1. Compute gradient directions

2. For each pixel, compute smoothed 1D directional derivative in the gradient
direction.

3. Find magnitude maxima of these derivatives

4. Get edgels by thresholding with hysteresis

http://cmp.felk.cvut.cz
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Finding maxima of derivative

� Why? Thresholding is not the way to go (leads to thick object boundaries)

threshold

� It is better to localize the maximum of derivative (non-maxima suppression)

window

� Possible to localize the maximum with sub-pixel precision.

http://cmp.felk.cvut.cz
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. . in 2D

� look for maxima along the directio of gradient
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Canny: Thresholding with hysteresis

� Why? Want to supress short (usually unimportant) chains of edgels. At the
same time, avoid fragmentation of long chains likely corresponding to object
boundaries.

� This cannot be done by thresholding. The trick is to use two thresholds
T1 < T2. Edges stronger than T2 are automatically edges. Edges stronger
than T1 are linked if connected to stronger edges.

http://cmp.felk.cvut.cz
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Scale selection

� Which σ of the Gaussian should be selected for computing derivatives? The
larger σ,

• the more effective is the noise suppression,

• the more weak edges disappear,

• the worse is the edge localization.

� This problem is a general one, it is not associated just with Canny detection.
It is the general problem during detection in images.

http://cmp.felk.cvut.cz
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. . . Example

http://cmp.felk.cvut.cz
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. . . Scale space

Scale space for 1D signal:

With increasing σ, an edge can annihilate, but but no new edge can possibly be
created.

2D: Lindeberg (1994) Scale-Space Theory in Computer Vision, Kluwer Academic
Publishers/Springer, Dordrecht, Netherlands, 1994.

http://cmp.felk.cvut.cz
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→ Live Demo: Chaining edges to lines

� filtered by Laplace

� detected zero-crossings

� chained to lines

http://cmp.felk.cvut.cz
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