Edge detection

Václav Hlaváč

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
Center for Machine Perception
http://cmp.felk.cvut.cz/~hlavac, hlavac@fel.cvut.cz
Thanks to T. Svoboda and T. Werner for several slides.

Edges - what for?

- It follows from neurophysiological and psychophysical studies that image points with high gradient attract attention.
- Such places carry more information.
- Edges often exhibit fair invariance to changes in illumination and/or viewpoint change.
- Edge detection is often a first step in computer vision algorithms: image recognition, 3D reconstruction, correspondence matching in stereo vision, tracking, etc.

Example: Painting

Pablo Picasso, La Sieste 1919

How do edges occur?

Edges are the result of discontinuities in the surface normal, in depth or in reflectance; they also appear due to highligts or irregularities in illumination (shadows).

Edges and edgels

Edge

- is computed from gradient at a point. It shares its magnitude and its direction is 90 degrees away from it. It is a 2-dimensional vector.

Edgel

- is a pixel with an edge.

Categories of Edge Detectors

Detectors based on:

1. finding maxima of first derivatives (Roberts, Prewitt, Sobel etc, Canny);
2. finding zero-crossing of second derivatives (Marr-Hildreth);
3. local approximation of image function by parametric model, e.g. a polynomial in x, y (Haralick).

Image Gradient

- Generally, the gradient of smooth function f of n variables is a vector of partial derivatives:

$$
\nabla f\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

- For $n=1$ (1D signal) it is equal to a (standard) derivative

For $n=2(2 \mathrm{D}$ signal) it's a 2D vector which can be described by polar coordinates (magnitude and angular direction ψ)

$$
\|\nabla f(x, y)\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}, \quad \psi=\arctan \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right) .
$$

Directional derivative of $f(x, y)$ in direction (u, v) is $(u, v) \cdot \nabla f(x, y)=u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}$.

Discrete approximation of gradient

Can be done by either of these two ways (with similar results)

- reconstruct the continuous function from the discrete one and compute its derivative
- approximate the derivative by finite differences

Finite differences:
non-symmetric: $f^{\prime}(i) \approx f(i)-f(i-1)$. (left difference, does not use pixel value $f(i+1)$)

- symmetric: $f^{\prime}(i) \approx \frac{1}{2}(f(i+1)-f(i-1))$ (O.K. but does not use $\left.f(i)\right)$
- This can be done by convolution: $f^{\prime} \approx[-1,+1] * f$, $f \approx[-0.5,0,+0.5] * f$.

Derivatives are susceptible to noise

image profile with noise

its derivative

Where is the edge?

\rightarrow smooth it with a Gaussian

Smoothing and derivative, combined

Sigma $=50$

Due to commutativity of derivative and convolution, the two ops can be interchanged. Due to associativity, both operations can be combined to a single operator:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(h * f)=\frac{\mathrm{d} h}{\mathrm{~d} x} * f .
$$

Edges and object boundaries

- Edges are sometimes chained in order to form object boundaries. This is why edge direction Φ is defined perpendicular to gradient direction Ψ.
- Provided that the object is separated from background by its image intensity, the boundaries are exactly the pixels with high magnitude of gradient.

Convolution masks 3×3 for a derivative

- Roberts (only 2×2)
- Prewitt
- Sobel
- Robinson
- Kirsch
- Laplace (approximates trace of Hessian of image function)

Roberts (2×2)

Two masks:

$$
h_{1}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad h_{2}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Magnitude of gradient computed as:

$$
\|g(x, y)-g(x+1, y+1), g(x, y+1)-g(x+1, y)\|
$$

Sensitive to noise (small neighbourhood used only).

Prewitt

$h_{1}=\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1\end{array}\right], \quad h_{2}=\left[\begin{array}{rrr}0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0\end{array}\right]$,

$$
h_{3}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right], \ldots
$$

original 256×256

derivative

derivative, thresholded

Example, Prewitt derivative in vertical direction

original 256×256

derivative

derivative, thresholded

Sobel

$$
\begin{gathered}
h_{1}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right], \quad h_{2}=\left[\begin{array}{rrr}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & -1 & 0
\end{array}\right] \\
h_{3}=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right], \ldots
\end{gathered}
$$

Laplacian

Image function $f(x, y)$, its Laplacian is:

$$
\nabla^{2} f(x, y)=\frac{\partial^{2} f(x, y)}{\partial x^{2}}+\frac{\partial^{2} f(x, y)}{\partial y^{2}}
$$

- $\nabla^{2} f$ is a scalar, not a vector. There is no "direction" provided.
- The Laplace oprator is rotation-invariant.
- For a monotonically increasing image function $f(x, y)$, Laplacian crosses zero at a place where the gradient $\|\nabla f(x, y)\|$ is maximum.

Discrete approximation of Laplacian

- Second finite difference is computed from first finite differences:

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \approx[-1,+1] *[-1,+1]=[+1,-2,+1]
$$

- Laplacian is the sum of finite differences in horizontal and vertical directions:

$$
\nabla^{2} \approx\left[\begin{array}{rrr}
0 & 0 & 0 \\
1 & -2 & 1 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & -2 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Alternatives:

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{array}\right], \quad\left[\begin{array}{rrr}
2 & -1 & 2 \\
-1 & -4 & -1 \\
2 & -1 & 2
\end{array}\right], \quad\left[\begin{array}{rrr}
-1 & 2 & -1 \\
2 & -4 & 2 \\
-1 & 2 & -1
\end{array}\right]
$$

Sharpening by a Laplacian

21/35

Laplacian is a high-pass filter.

original 256×256

Laplacian

Sharpening (- 0,4)

Laplacian of Gaussian (=Laplace of smoothed image)

Laplacian ∇^{2} is even more sensitive to noise than gradient. Thus, it is again combined with a Gaussian G. Again, the two operators can be combined to one \rightarrow LoG (Laplacian of Gaussian).

$$
\nabla^{2}(G * f)=\left(\nabla^{2} G\right) * f=\operatorname{LoG}(f)
$$

For a given σ, (subst. $x^{2}+y^{2}=r^{2}$):

$$
G(r)=e^{-\frac{r^{2}}{2 \sigma^{2}}}, \quad G^{\prime}(r)=-\frac{1}{\sigma^{2}} r e^{-\frac{r^{2}}{2 \sigma^{2}}}, \quad G^{\prime \prime}(r)=\frac{1}{\sigma^{2}}\left(\frac{r^{2}}{\sigma^{2}}-1\right) e^{-\frac{r^{2}}{2 \sigma^{2}}} .
$$

(c is normalization constant)

$$
\nabla^{2} G(x, y)=c\left(\frac{x^{2}+y^{2}-\sigma^{2}}{\sigma^{4}}\right) e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

2D operators

Gaussian

Derivative of Gaussian

Laplace of Gaussian (LoG)

How to evaluate zero crossings?

- E.g. in 2×2 neighbourhood; one pixel is a reference one and zero crossing is detected if sign is changed in the window.

Zero crossings: example

Original

DoG $\sigma_{1}=0,1 \sigma_{2}=0,09$

Zero crossings

additional edge strength thresholding

26/35

zero crossings

after weak edge removal,

LoG, $\sigma=0,2$

LoG \& physiology

- Circular receptive fields (center-surround)

Fig. 10. Center-surround receptive fields can be ON center or OFF center with the oposite sign annular surround.

Fig. 12. Diagram of the organization of center-surround responses using horizontal cell circuitry to provide the antagonistic surround.

Canny edge detector

- A simple detector addressing the shortcomings of majority of (even simpler) detectors

Algorithm:

1. Compute gradient directions
2. For each pixel, compute smoothed 1D directional derivative in the gradient direction.
3. Find magnitude maxima of these derivatives
4. Get edgels by thresholding with hysteresis

Finding maxima of derivative

- Why? Thresholding is not the way to go (leads to thick object boundaries)

- It is better to localize the maximum of derivative (non-maxima suppression)

- Possible to localize the maximum with sub-pixel precision.
- look for maxima along the directio of gradient

Canny: Thresholding with hysteresis

- Why? Want to supress short (usually unimportant) chains of edgels. At the same time, avoid fragmentation of long chains likely corresponding to object boundaries.
- This cannot be done by thresholding. The trick is to use two thresholds $T_{1}<T_{2}$. Edges stronger than T_{2} are automatically edges. Edges stronger than T_{1} are linked if connected to stronger edges.

Scale selection

- Which σ of the Gaussian should be selected for computing derivatives? The larger σ,
- the more effective is the noise suppression,
- the more weak edges disappear,
- the worse is the edge localization.
- This problem is a general one, it is not associated just with Canny detection. It is the general problem during detection in images.

Scale space for 1D signal:

With increasing σ, an edge can annihilate, but but no new edge can possibly be created.

2D: Lindeberg (1994) Scale-Space Theory in Computer Vision, Kluwer Academic Publishers/Springer, Dordrecht, Netherlands, 1994.
\rightarrow Live Demo: Chaining edges to lines

- filtered by Laplace
- detected zero-crossings
- chained to lines

