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pEvolutionary Programming

Lawrence J. Fogel in 1960: Evolutionary programming (1960)

The goal is to evolve an ”intelligent behavior” that would exhibit the ability to (1) predict one’s

environment, coupled with (2) a translation of the predictions into a suitable response in light of

the given goal.

� the environment was described as a sequence of symbols taken from a finite alphabet,

� finite state machines (FSMs) were used for representing the required behavior.

Five modes of mutation

� add a state,

� delete a state,

� change the initial state,

� change an output symbol,

� change a next-state transi-

tion.

FSM

D. B. Fogel and K. Chellapilla: Revisiting Evolutionary

Programming, Aerospace/Defense Sensing and controls.
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pEvolution Strategies: Optimization of a Two-Phase Nozzle

Ingo Rechenberg and Hans-Paul Schwefel: Evolution Strategy (early 1960s)

The task was to determine the internal shape of a two-phase jet nozzle with maximum thrust

under constant starting conditions.

� The nozzles were built of conical pieces such that no discontinuity within the internal shape

was possible.

� Every nozzle shape could be represented by its overall length and the inside diameters at the

borders between the segments (every 10mm).

(1+1) Evolution Strategy using mutations of the following forms:

� Add new segment to the nozzle at positions chosen at random.

� Duplicate an existing segment.

� Delete a randomly chosen segment.

� Vary diameters of a randomly chosen segment.

−→

http://ls11-www.cs.uni-dortmund.de/people/kursawe/Demos/Duese/dueseGIFE.html
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pEvolutionary Algorithms: Characteristics

:: EA are stochastic optimization algorithms

� Stochastic – but not random search,

� Use an analogy of natural evolution

− genetic inheritance (J.G. Mendel) – the basic principles of transference of hereditary fac-

tors from parent to offspring – genes, which present hereditary factors, are lined up on

chromosomes.

− strife for survival (Ch. Darwin) – the fundamental principle of natural selection – is the

process by which individual organisms with favorable traits are more likely to survive and

reproduce.

� Not fast in some sense – population-based algorithm,

� Robust – efficient in finding good solutions in difficult searches.
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pEA: Vocabulary

:: Vocabulary borrowed from natural genetics

� Individual (chromosome + its quality measure ”fitness value”) – a solution to a problem.

� Chromosome – entire representation of the solution.

� Fitness – quality measure assigned to an individual, expresses how well it is adapted to the

environment.

� Gene (also features, characters) – elementary units from which chromosomes are made.

− each gene is located at certain place of the chromosome called locus (pl. loci),

− a particular value for a locus is an allele.

example: the ”thickness” gene (which might be at locus 8) might be set to allele 2,

meaning its second-thinnest value.

� Genotype – what’s on the chromosome.

� Phenotype – what it means in the problem context (e.g., binary sequence may map to

integers or reals, or order of execution, etc.).
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pRepresentation

:: Problem can be represented as

� binary string –

� real-valued string –

� string of chars –

� or as a tree

� or as a graph, and others.
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pEvaluation Function

:: Objective (Fitness) function

� the only information about the sought solution the algorithm dispose of,

� must be defined for every possible chromosome.

:: Fitness function may be

� multimodal,

� discrete,

� multidimensional,

� nonlinear,

� noisy,

� multiobjective.

:: Fitness does not have to be define analytically

� simulation results,

� classification success rate.

:: Fitness function should not be too costly!!!
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pExample: Coding & Evaluation

:: Function optimization

� maximization of f (x, y) = x2 + y2,

� parameters x and y take on values from interval < 0, 31 >,

� and are code on 5 bits each.
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pEvolutionary Cycle
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pIdealized Illustration of Evolution

� Uniform sampled population. � Population converged to promising regions.
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pInitialization

:: Random

� randomly generated solutions,

� no prior information about the shape of the sought solution,

� relies just on ”lucky” sampling of the whole search space by a finite set of samples.

:: Informed (pre-processing)

� (meta)heuristic routines used for seeding the initial population,

� biased random generator sampling regions of the search space that are likely to contain the

sought solutions,

+ may help to find better solutions,

+ may speed up the search process,

– may cause irreversible focusing of the search process on regions with local optima.
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pReproduction

:: Models nature’s survival-of-fittest principle

� prefers better individuals to the worse ones,

� still, every individual should have a chance to reproduce.

:: Roulette wheel

� probability of choosing some solution is di-

rectly proportional to its fitness value

:: Other methods

� Stochastic Universal Sampling,

� Tournament selection,

� Reminder Stochastic Sampling.
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pReproduction: Premature Convergence & Stagnation

:: Two (strongly related) important issues in the evolution process

� population diversity,

� selective pressure.

:: Premature convergence – a premature loss of diversity in the population with the search

converging to a sub-optimal solution.

� early stages of the evolution search process.

:: Stagnation – ineffective search due to a weak selective pressure.

� later stages of the evolution search process.
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pPremature Convergence
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pStagnation
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pHow to Deal with it?

:: Balance between exploration and exploitation.

� How to achieve the optimal selective pressure during the whole evolution search?

:: Options

� scaling techniques,

� proper selection mechanisms,

� fitness sharing and crowding,

� . . . .
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pScaling

:: Linear scaling – adjustment of the fitness values distribution in order to get desired selection

pressure

σ = fmax/favg

The actual chromosomes’ fitness is scaled as

f ′i = a · fi + b

Parameters a and b are selected so that

� the average fitness is mapped to itself, and

� the best fitness is increased by a desired multiple of the average fitness.

Typical value of σ is from (1.5, 2.0)
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pEffect of Linear Scaling
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pTournament Selection

:: Tournament selection – the best out of n randomly chosen individuals is selected.

� n is the size of the tournament,

� rank-based method – absolute differences among individuals do not count.
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pRank Selection

:: Rank selection – fitness of the individual is calculated based on the rank of the individual in

the population according to the formula

f ′i = PopSize− rank(i) + shift

where shift is the fitness of the worst individual in the population.
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pGenetic Operators: Crossover

:: Idea

� given two well-fit solutions to the given problem, it is possible to get a new solution by properly

mixing the two that is even better than both its parents.

:: Role of crossover

� sampling (exploration) of the search space

Example: 1-point crossover
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pGenetic Operators: Mutation

Role of mutation

� preservation of a population diversity,

� minimization of a possibility of loosing some important piece of genetic information.

Single bit-flipping mutation
Population with missing genetic

information

0 0 1 1 0 0 0 1 1 0

0 1 1 0 0 1 0 1 0 0

0 0 0 1 1 0 1 0 1 1

0 1 0 0 1 0 0 1 1 1

0 1 1 0 0 0 0 1 0 1

. . .

0 1 0 0 1 1 0 1 0 0
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pReplacement Strategy

Replacement strategy defines

� how big portion of the current generation will be replaced in each generation, and

� which solutions in the current population will be replaced by the newly generated ones.

Two extreme cases

� Generational – the whole old population is completely rebuild in each generation (analogy

of short-lived species).

� Steady-state – just a few individuals are replaced in each generation (analogy of longer-lived

species).
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pApplication Areas of Evolutionary Algorithms

EAs are popular for their

� simplicity,

� effectiveness,

� robustness.

Holland: ”It’s best used in areas where you don’t really have a good idea what the solution

might be. And it often surprises you with what you come up with.”

Applications
� control,

� engineering design,

� image processing,

� planning & scheduling,

� VLSI circuit design,

� network optimization & routing problems,

� optimal resource allocation,

� marketing,

� credit scoring & risk assessment,

� and many others.
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pMultiple Traveling Salesmen Problem

Rescue operations planning

� Given N cities and K agents, find an opti-

mal tour for each agent so that every city is

visited exactly once.

� A typical criterion to be optimized is the

overall time spent by the squad (i.e., the

slowest team member) during the task ex-

ecution.
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pArtificial Ant Problem

Santa Fe trail

� 32× 32 grid with 89 food pieces.

� Obstacles

− 1×, 2× strait,

− 1×, 2×, 3× right/left.

Ant capabilities

� detects the food right in front of

him in direction he faces.

� actions observable from outside

− MOVE – makes a step and eats

a food piece if there is some,

− LEFT – turns left,

− RIGHT – turns right,

− NO-OP – no operation.

Goal is to find a strategy that would navigate an ant through the grid so that it finds all the food

pieces in the given time (600 time steps).
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pArtificial Ant Problem: GA Approach

Collins a Jefferson 1991, standard GA using binary representation

Representation

� strategy represented by finite state machine,

� table of transitions coded as binary chromosomes of fixed length.

Example: 4-state FSM, 34-bit long chromosomes (2 + 4× 8)
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pArtificial Ant Problem: Example cont.

Ant behavior

� What happens if the ant ”hits” an obstacle?

� What is strange with transition from state 10

to the initial state 00?

� When does the ant succeed?

� Is the number of states sufficient to solve the

problem?

� Do all of the possible 34-bit chromosomes

represent a feasible solution?
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pArtificial Ant Problem: GA result

Representation

� 32 states,

� 453 = 64× 7 + 5 bits !!!

Population size: 65.536 !!!

Number of generations: 200

Total number of samples tried: 13× 106 !!!
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pSchema Theory

Schema theory (J. Holland, 1975) – tries to analyze effect of selection, crossover and mutation

on the population’s genotype in order to answer the question: ”Why and How Evolutionary
Algorithms Work?”

In its original form the schema theory assumes:

� binary representation,

� proportionate roulette wheel selection,

� 1-point crossover and bit-flip mutation.
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pSchema theory

:: Schema – a template, which defines set of solutions from the search space with certain specific

similarities.

� consists of 0s, 1s (fixed values) and wildcard symbols * (any value),

� covers 2r strings, where r is a number of ∗ used in the schema.

Example: schema S ={11*0*} covers strings 11000, 11001, 11100, and 11101

:: Schema properties

� Defining length δ(S) (compactness) – distance between first and last non-* in a schema

(= number of positions where 1-point crossover can disrupt it).

� Order o(S) (specificity) – a number of non-*’s (= number of positions where simple bit

swapping mutation can disrupt it).

− Chromosomes are order l schemata, where l is length of chromosome (in bits or loci).

− Chromosomes are instances (or members) of lower-order schemata.

− How many schemata are matched by a string of length l?

� Fitness f (S) (quality) – average fitness computed over all covered strings.

Example: S ={**1*01*0**}: δ(S) = 5, o(S) = 4
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pSchema Properties: Example

:: 8-bit Count Ones problem – maximize a number of ones in 8-bit string.

string fitness string fitness

00000000 0 11011111 7

00000001 1 . . . 10111111 7

00000010 1 01111111 7

00000100 1 11111111 8

Assume schema Sa ={1*1**10*} vs. Sb ={*0*0****}:
� defining length: δ(Sa) = 7− 1 = 6, δ(Sb) = 4− 2 = 2

� order: o(Sa) = 4, o(Sb) = 2

� fitness of Sa: Sa covers 24 strings in total

1 string of fitness 3

4 string of fitness 4 f (Sa) = (1 · 3 + 4 · 4 + 6 · 5 + 4 · 6 + 1 · 7)/16
6 string of fitness 5 f (Sa) = 80/16 = 5

4 string of fitness 6

1 string of fitness 7

fitness of Sb: Sb = (1 · 0 + 6 · 1 + 15 · 2 + 20 · 3 + 15 · 4 + 6 · 5 + 1 · 6)/26 = 192/64 = 3

Question: What would be a fitness of S ={*0*1****} compared to Sb?
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pSchema Theorem Derivation: Effect of Reproduction

Let m(S, t) be number of instances (strings) of schema S in population of size n at time t.

Question: How do schemata propagate? What is a lower bound on change in sampling rate of

a single schema from generation t to t + 1?

Effect of fitness-proportionate roulette wheel selection

A string ai is copied according to its fitness; it gets selected with probability

pi =
fi∑
fj
.

After picking n strings with replacement from the population at time t, we expect to have

m(S, t + 1) representatives of the schema S in the population at time t + 1 as given by the

equation

m(S, t + 1) = m(S, t) · n · f (S)∑
fj
,

where f (S) is the fitness of schema S at time t.
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pSchema Theorem Derivation: Effect of Reproduction

Let m(S, t) be number of instances (strings) of schema S in population of size n at time t.

Question: How do schemata propagate? What is a lower bound on change in sampling rate of

a single schema from generation t to t + 1?

Effect of fitness-proportionate roulette wheel selection

A string ai is copied according to its fitness; it gets selected with probability

pi =
fi∑
fj
.

After picking n strings with replacement from the population at time t, we expect to have

m(S, t + 1) representatives of the schema S in the population at time t + 1 as given by the

equation

m(S, t + 1) = m(S, t) · n · f (S)∑
fj
,

where f (S) is the fitness of schema S at time t.

The formula can be rewritten as

m(S, t + 1) = m(S, t) · f (S)
favg

,

where favg is the average fitness of the population.
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pSchema Theorem Derivation: Effect of Crossover and Mutation

Effect of 1-point Crossover

� Survival probability ps – let’s make a conservative assumption that crossover within the defining

length of S is always disruptive to S, and ignore gains.

� Crossover probability pc – fraction of population that undergoes crossover.

ps ≥ 1− (pc · δ(S)/(L− 1))

Example: Compare survival probability of S = (11 ∗ ∗ ∗ ∗) and S = (1 ∗ ∗ ∗ ∗0).
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pSchema Theorem Derivation: Effect of Crossover and Mutation

Effect of 1-point Crossover

� Survival probability ps – let’s make a conservative assumption that crossover within the defining

length of S is always disruptive to S, and ignore gains.

� Crossover probability pc – fraction of population that undergoes crossover.

ps ≥ 1− (pc · δ(S)/(L− 1))

Example: Compare survival probability of S = (11 ∗ ∗ ∗ ∗) and S = (1 ∗ ∗ ∗ ∗0).

Effect of Mutation

Each fixed bit of schema (o(S) of them) changes with probability pm, so they all stay unchanged

with probability

ps = (1− pm)o(S)

that can be approximated as

ps = (1− o(S) · pm)
assuming pm � 1.
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pSchema Theorem Derivation (cont.)

:: Finally, we get a ”classical” form of the reproductive schema growth equation:

m(S, t + 1) ≥ m(S, t) · f (S)
favg

· [1− pc ·
δ(S)

L− 1
− o(S) · pm].

What does it tell us?
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pSchema Theorem Derivation (cont.)

:: Finally, we get a ”classical” form of the reproductive schema growth equation:

m(S, t + 1) ≥ m(S, t) · f (S)
favg

· [1− pc ·
δ(S)

L− 1
− o(S) · pm].

What does it tell us?

:: Schema theorem: Short, low-order, above-average schemata receive exponentially increasing

trials in subsequent generations of a genetic algorithm.

:: Building Block Hypothesis: A genetic algorithm seeks near-optimal performance through

the juxtaposition of short, low-order, high-performance schemata, called the building blocks.

David Goldberg: ”Short, low-order, and highly fit schemata are sampled, recombined, and resam-

pled to form strings of potentially higher fitness. . . we construct better and better strings from

the best partial solutions of the past samplings.”

:: Y. Davidor: ”The whole GA theory is based on the assumption that one can state something

about the whole only by knowing its parts.”

Corollary: The problem of coding for a GA is critical for its performance, and that such a coding

should satisfy the idea of short building blocks.
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pEA Materials: Reading, Demos, Software

:: Reading

� D. E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, 1989.

� Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1998.

� Z. Michalewicz: How to solve it? Modern heuristics. 2nd ed. Springer, 2004.

:: Demos

� M. Obitko: Introduction to genetic algorithms with java applets,

http://cs.felk.cvut.cz/ xobitko/ga/

:: Software

� ECJ 16 – A Java-based Evolutionary Computation Research System

http://cs.gmu.edu/ eclab/projects/ecj/

� PISA – A Platform and Programming Language Independent Interface for Search Algorithms

http://www.tik.ee.ethz.ch/sop/pisa/?page=selvar.php
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