
Service Oriented Architecture & Web Services (part II)

Jan Jusko

FEE CTU

April 30, 2013

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 1 / 53



Outline

1 SOA & WS

2 Cryptography

3 Web services security

4 SOA delivery strategies

5 SOA Design Paterns

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 2 / 53



SOA & WS

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 3 / 53



SOA building blocks

message
I unit of communication
I represents the data required to complete some or all parts of a unit of

work

operation
I unit of work
I represents the logic required to process messages in order to complete

a unit of work

service
I unit of processing logic (collections of units of work)
I represents a logically grouped set of operations capable of performing

related units of work

process
I unit of automation logic (coordinated aggregation of units of work)
I represents a large piece of work that requires the completion of smaller

units of work

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 4 / 53



SOA building blocks

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 5 / 53



WS counterparts

SOAP messages

Web service operations

Web services

activities
I represent the temporary interaction of a group of Web services

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 6 / 53



SOA Principles

reusability

share a formal contract

loosely coupled

underlying logic abstraction

composability

autonomy

discoverability

statelessness

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 7 / 53



WS support for SOA principles (I)

reusability
I not automatically reusable, depends on the logic encapsulation

share a formal contract
I service descriptions (WSDL) are fundamental part of WS

communication

loosely coupled
I naturally loosely coupled due to the use of service descriptions

underlying logic abstraction
I natively supported as Web Services publish only their interface and

hide all the underlying logic

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 8 / 53



WS support for SOA principles (II)

composability
I naturally composable, the extent of possible composability depends on

the services design

autonomy
I requires design effort, not automatically autonomous

discoverability
I must be implemented by the architecture

statelessness
I preferred type of Web Services, but not guaranteed

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 9 / 53



SOA Principles not natively supported by WS

reusability

autonomy

discoverability

statelessness

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 10 / 53



Cryptography

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 11 / 53



Symmetric encryption

encryption and decryption use the same key

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 12 / 53



Asymmetric encryption

uses a pair of keys, a public and a private key

message encrypted by a public key can be decrypted only by a private
key and vice-versa

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 13 / 53



Asymmetric encryption performance issue

asymmetric cryptography is very computationally extensive

use of a random encryption key
I sender generates a random key
I sender encrypts the generated key with recipient’s public key and sends

it
I recipient decrypts the generated key
I the generated key is then used to encrypt/decrypt the actual data to

be sent

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 14 / 53



Hash Function

a hash function H is a transformation that takes an input m and
returns a fixed-size string, which is called the hash value h (that is, h
= H(m))

the basic requirements for a cryptographic hash function are
I the input can be of any length
I the output has a fixed length
I H(x) is relatively easy to compute for any given x
I H(x) is one-way
I H(x) is collision-free

used for example for checksums

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 15 / 53



Web services security

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 16 / 53



WS security - motivation

integrity - messages are not duplicated, modified, reordered, etc.

confidentiality - protects communication and data from passive
attacks as eavesdropping or disclosure

authentication - allows agents to prove their identity to each other,
i.e. to verify that the opposite side of communications is who it
claims to be

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 17 / 53



WS security

transport layer security

WS-security (XML/SOAP security)

higher-layers security

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 18 / 53



SOA building blocks

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 19 / 53



WS security - transport layer

well-known and established protocols

point-to-point security

request and response use same security properties

transport specific

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 20 / 53



WS Security

WS-security describes three main mechanisms
I how to sign SOAP messages to assure integrity
I how to encrypt SOAP messages to assure confidentiality
I how to attach security tokens to ascertain the sender’s identity

uses cryptography, XML encryption and signatures

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 21 / 53



WS security - XML signature

used to prove the identity of the sender & that the message is intact

XML encryption is not an option as it is slow (calculation & transfer)

instead, we calculate the hash of XML and encrypt it with our private
key

this encrypted hash is appended to the XML file and sent to the
recipient

the recipient decrypts the hash using the public key and compares
with a hash value that he calculated

if they are the same, the identity of the sender is verified as only the
sender has the private key

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 22 / 53



WS security - XML encryption

we can encrypt whole XML, a single element or contents of an
element

end to end security

we can use symmetric or asymmetric encryption

different security mechanisms can be applied to request and response

self-protecting message (transport independent)

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 23 / 53



original XML

<?xml version=’1.0’?>

<PaymentInfo xmlns=’http://foo.org/details’>

<Name>Joe User</Name>

<CreditCard Limit=’12,000’ Currency=’EUR’>

<Number>1234 5678 9012 3456</Number>

<Issuer>Local Bank</Issuer>

<Expiration>12/06</Expiration>

</CreditCard>

</PaymentInfo>

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 24 / 53



encrypted XML element and its contents

<?xml version=’1.0’?>

<PaymentInfo xmlns=’http://foo.org/details’>

<Name>Joe User</Name>

<EncryptedData Type=’http://www.w3.org/...xmlenc#Element’

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<CipherData>

<CipherValue>A23B45C56</CipherValue>

</CipherData>

</EncryptedData>

</PaymentInfo>

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 25 / 53



encrypted XML element contents

<?xml version=’1.0’?>

<PaymentInfo xmlns=’http://foo.org/details’>

<Name>Joe User</Name>

<CreditCard Limit=’12,000’ Currency=’EUR’>

<EncryptedData xmlns=’http://www.w3.org/2001/04/xmlenc#’

Type=’http://www.w3.org/2001/04/xmlenc#Content’>

<CipherData>

<CipherValue>A23B45C56</CipherValue>

</CipherData>

</EncryptedData>

</CreditCard>

</PaymentInfo>

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 26 / 53



encrypted XML

<?xml version=’1.0’ ?>

<EncryptedData xmlns=’http://www.w3.org/2001/04/xmlenc#’

Type=’http://www.isi.edu/in-notes/...’>

<CipherData>

<CipherValue>GEwsRe234f</CipherValue>

</CipherData>

</EncryptedData>

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 27 / 53



SOA delivery strategies

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 28 / 53



SOA delivery strategies

top-down

bottom-up

agile

not to be mistaken with WS development strategies!

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 29 / 53



SOA delivery strategies : top-down (I)

1 define ontology
I identify concepts & entities and relationships among them
I defines a new vocabulary that can be used to describe the problem

domain

2 align business-models to the ontology
I business-models might need to be adjusted to reflect new ontology
I new business-models might be created

3 perform service-oriented analysis

4 perform service-oriented design

5 develop the services

6 test

7 deploy

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 30 / 53



SOA delivery strategies : top-down (II)

analysis-first approach

in general results in a high-quality service architecture

very time-consuming and expensive

might not show any immediate results

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 31 / 53



SOA delivery strategies : bottom-up (I)

1 model required application services
I definition of application requirements that can be fulfilled through the

use of WS, e.g. communication channel between legacy systems or B2B

2 design the required application services
I limited space for design possibilities as the solutions may be purchased

or automatically generated (wrappers)
I new services should be modeled

3 develop the required application services

4 test

5 deploy

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 32 / 53



SOA delivery strategies : bottom-up (II)

WS are built on as-needed basis

WS are modeled to encapsulate application logic to best serve the
immediate needs

the most common approach

SOA principles are rarely considered, not a true SOA

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 33 / 53



SOA delivery strategies : agile

top-down and bottom-up approaches can be considered to be two
extremes on the opposite sides of the spectrum

seeking something in-between, that would incorporate proper SOA
solution, while still providing quick delivery of services

more complex than previous approaches

business-level analysis concurrent with service design & development

the process starts with business-analysis and after it has proceeded
enough, the design phase starts as well

developed processes need to be realigned after each cycle of
business-analysis

this approach requires much more effort, as developed services often
need to be designed

immutable service contracts
I contract once published can not be changed, however, it can be

extended

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 34 / 53



SOA analysis

the process of determining how business automation requirements can
be represented through service-orientation

trying to answer the following questions:
I what services need to be built?
I what logic should be encapsulated by each service?

goals of service-oriented analysis
I define a preliminary set of service operation candidates
I group service operation candidates into logical contexts. These

contexts represent service candidates
I define preliminary service boundaries so that they do not overlap with

any existing or planned services.
I identify encapsulated logic with reuse potential
I define any known preliminary composition models

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 35 / 53



3 steps of SOA analysis

define business automation requirements

identify existing automation systems
I any existing systems supporting the automation logic
I legacy applications
I this step helps identify application service candidates

model candidate services
I operation candidates are identified and grouped by logical context, thus

creating services
I services are further assembled into a composite model

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 36 / 53



SOA Design Paterns

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 37 / 53



General Design Pattern Template

Problem

Solution

Application

Impacts

Principles

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 38 / 53



Design Pattern Groups

Service Inventory Design Patterns

Service Design Patterns

Service Composition Design Patterns

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 39 / 53



Enterprise Inventory

Problem Delivering services independently establishes a risk of
producing inconsistent service and architecture implementations,
compromising recomposition opportunities

Solution Standardized, enterprise-wide inventory architecture wherein
services can be freely and repeatedly recomposed.

Application Modeled in advance, enterprise-wide standards are
applied

Impacts upfront analysis, organizational impacts

Principles service contract, abstraction, composability

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 40 / 53



Domain Inventory

Problem Enterprise directory is unmanageable

Solution Grouping services into manageable domain-specific
inventories, independent of each other

Application Inventory domain boundaries need to be carefully
established

Impacts Standardization disparity between domain service inventories
imposes transformation requirements and reduces the benefit of the
SOA adoption

Principles service contract, abstraction, composability

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 41 / 53



Service Normalization

Problem When delivering services, there is a risk that services will be
created with overlapping functionality, making reuse difficult

Solution The service inventory needs to be designed with an
emphasis on service boundary alignment

Application Functional service boundaries are modeled as part of a
formal analysis process

Impacts Ensuring that service boundaries are and remain well-aligned
introduces extra up-front analysis

Principles service autonomy

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 42 / 53



Design Pattern Groups

Service Inventory Design Patterns

Service Design Patterns

Service Composition Design Patterns

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 43 / 53



Basics of Service Design Patterns

most essential steps required to partition and organize solution logic
into services and capabilities in support of subsequent composition

Service Identification Patterns – The overall solution logic required to
solve a given problem is first defined, and the parts of this logic
suitable for service encapsulation are subsequently filtered out

Service Definition Patterns – Base functional service contexts are
defined and used to organize available service logic.

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 44 / 53



Functional Decomposition

Problem To solve a large, complex business problem a corresponding
amount of solution logic needs to be created -¿ self contained
application

Solution The large business problem can be broken down into a set
of smaller, related problems

Application Service oriented analysis is used to decompose the large
problem

Impacts The ownership of multiple smaller programs can result in
increased design complexity

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 45 / 53



Service Encapsulation

Problem Solution logic designed for a single application environment
is typically limited in its potential to interoperate with other parts of
an enterprise

Solution Solution logic can be encapsulated by a service so that it is
capable of functioning beyond the boundary for which it is initially
delivered

Application Solution logic suitable for service encapsulation needs to
be identified

Impacts Service-encapsulated solution logic is subject to additional
design considerations

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 46 / 53



Service Façade

Problem The coupling of the core service logic to contracts and
implementation resources can inhibit its evolution

Solution A service façade component is used to abstract a part of the
service architecture

Application A separate façade component is incorporated into the
service design

Impacts The addition of the façade component introduces design
effort and performance overhead

Principles service contract, service loose coupling

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 47 / 53



Redundant Implementation

Problem A service that is being actively reused introduces a potential
single point of failure

Solution Reusable services can be deployed via redundant
implementations

Application The same service implementation is redundantly
deployed or supported by infrastructure with redundancy features

Impacts Extra effort is required to keep all redundant
implementations in sync

Principles service autonomy

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 48 / 53



Design Pattern Groups

Service Inventory Design Patterns

Service Design Patterns

Service Composition Design Patterns

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 49 / 53



Capability Composition

Problem A capability may not be able to fulfill its processing
requirements without adding logic that resides outside of its service’s
functional context

Solution Capability logic within the service is designed to compose
one or more capabilities in other services

Application The functionality encapsulated by a capability includes
logic that can invoke other capabilities from other services

Impacts Carrying out composition logic requires external invocation,
which adds performance overhead and decreases service autonomy

Principles all

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 50 / 53



Capability Recomposition

Problem Using agnostic service logic to only solve a single problem is
wasteful and does not leverage the logic’s reuse potential

Solution Agnostic service capabilities can be designed to be
repeatedly invoked in support of multiple compositions that solve
multiple problems

Application

Impacts Repeated service composition demands existing and
persistent standardization and governance

Principles all

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 51 / 53



Service Callback

Problem When a service needs to respond to a consumer request
through the issuance of multiple messages or when service message
processing requires a large amount of time, it is often not possible to
communicate synchronously

Solution A service can require that consumers communicate with it
asynchronously and provide a callback address to which the service
can send response messages

Application A callback address generation and message correlation
mechanism needs to be incorporated into the messaging framework
and the overall inventory architecture

Impacts Asynchronous communication can introduce reliability
concerns and can further require that surrounding infrastructure be
upgraded to fully support the necessary callback correlation

Principles Standardized Service Contract, Service Loose Coupling,
Service Composability

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 52 / 53



References

A4M33AOS materials by Jiri Vokrinek
(http://cw.felk.cvut.cz/doku.php/courses/a4m33aos/start)

Service-Oriented Architecture: Concepts, Technology, and Design by
Thomas Erl

Web Services Security by Mark O’Neill et al.

Jan Jusko (FEE CTU) SOA & WS (II) April 30, 2013 53 / 53


	SOA & WS
	Cryptography
	Web services security
	SOA delivery strategies
	SOA Design Paterns

