
Architecture of software systems

Course 8: Data structures, memory management , garbage collector

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

Data structures

» primitives: boolean, byte, char, int, long, float, double

» without implicit allocation

» placed in frame in variables or operand stack

» objects

» every object is descendant of Object by default

» methods – clone(), equals, getClass(), hashCode(), wait(…), notify
(…), finalize()

» objects for primitives: Boolean, Byte, Character, Integer, Long, Float,
Double; can be null; all are immutable objects (final values)

» other objects

» arrays

» special data structure which store a number of items of the same type
in linear order; have the defined limit

» JAVA automatically check limitations

» allocated on the heap

» multi-dimensional arrays = arrays of arrays; ragged array

4/8/2014 2 A4B77ASS – Course 8

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa

» since JAVA 5

» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

4/8/2014 ? 3 A4B77ASS – Course 8

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa

» since JAVA 5

» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

» works only during assignment or parameter passing

4/8/2014 ? 4 A4B77ASS – Course 8

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa

» since JAVA 5

» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

» works only during assignment or parameter passing

» example: count word frequency/histogram

» boxing and un-boxing brings inefficiencies !

4/8/2014 5 A4B77ASS – Course 8

Example

» what is the output? and what is the output for i=2000 and j=2000 ?

4/8/2014 ? 6 A4B77ASS – Course 8

Example

» what is the output? and what is the output for i=2000 and j=2000 ?

true true

true false

true true

» but not after serialization, there is no readResolve !

4/8/2014 7 A4B77ASS – Course 8

Integer – usage of identity semantics

» similar concept as in multiton; Integer itself is Immutable (final)

4/8/2014 8 A4B77ASS – Course 8

Integer

4/8/2014 9 A4B77ASS – Course 8

Widening vs. autoboxing

» what are the outputs?

4/8/2014 ? 10 A4B77ASS – Course 8

Widening vs. autoboxing

» what are the outputs?

 long Integer

» why?

 prefer widening cannot use autoboxing

 before autoboxing to widen primitives

 -> error if no

 hello(Integer) method

4/8/2014 11 A4B77ASS – Course 8

Example

» what is the outputs?

4/8/2014 ? 12 A4B77ASS – Course 8

Example

» what is the outputs?

100 - because we are removing Integers instead of Short !!

» correct:

4/8/2014 13 A4B77ASS – Course 8

Method overloading

» method is identified by its signature

» can be compiled and what is the output?

4/8/2014 ? 14 A4B77ASS – Course 8

Method overloading

» method is identified by its signature

» can be compiled and what is the output?

• YES – no ambiguity

method with parameter type – String

» due to JLS specification:

 “The Java programming language uses the rule that the most specific
method is chosen.”

4/8/2014 15 A4B77ASS – Course 8

Method overloading

» can be compiled and what is the output?

4/8/2014 ? 16 A4B77ASS – Course 8

Method overloading

» can be compiled and what is the output?

» NO – cannot find “most specific”, both are sub-classes of Object but not
in the same inheritance hierarchy

4/8/2014 17 A4B77ASS – Course 8

Method overloading

» can be compiled and what is the output?

4/8/2014 ? 18 A4B77ASS – Course 8

Method overloading

» can be compiled and what is the output?

• YES

method with param types – String, Object

4/8/2014 19 A4B77ASS – Course 8

Method overloading

» BUT

» this cannot be compiled – cannot identify “most specific”

4/8/2014 20 A4B77ASS – Course 8

Method overloading

» can be compiled and what is the output?

4/8/2014 ? 21 A4B77ASS – Course 8

Method overloading

» can be compiled and what is the output?

• YES

Collection

- compile time resolution not run-time type

4/8/2014 22 A4B77ASS – Course 8

JVM Memory

4/8/2014 23 A4B77ASS – Course 8

all threads thread isolated

Memory management

» explicit vs. automatic

• no crashes due to errors – e.g. usage of de-allocated objects

• no memory (space) leaks

» garbage collection managed by garbage collector

• live objects (transiently reachable from roots – thread frames, static
fields) remain in memory

• dead are reclaimed

» desired garbage collection characteristics:

• allocation performance - find a block of unused memory with certain
size

• avoid fragmentation (e.g. by compaction)

• efficiency without long pauses in application run

• no bottleneck for multi-threaded (multi-core/multi-CPUs) systems

» design architectures:

• serial vs. parallel

• concurrent vs. stop-the-world

• compacting vs. non-compacting vs. copying

4/8/2014 24 A4B77ASS – Course 8

Generational concept

» heap divided into generations based on object ages:

• young – frequent GC, small size -> fast GC

• old – rare GC, large size -> slow GC

» promotion (tenuring) objects based on survival of objects during GC

» based on weak generational hypothesis:

• most allocated objects are not referenced for long – they die young

• few references from older to younger object exist

» need track old-to-young references

4/8/2014 25 A4B77ASS – Course 8

JAVA heap layout

» minor (young) vs. major (old) GC – different algorithms

» major GC can be invoked by young GC if there is no space in tenured space

4/8/2014 26 A4B77ASS – Course 8

Fast object allocation

» based on bump-the-pointer technique

• track previously allocated object

• fit new object into remainder of generation end

» thread-local allocation buffers (TLABs)

• remove concurrency bottleneck

• each thread has very small exclusive area (about 1% of Eden in total)

• infrequent full TLABs implies synchronization (based on CAS)

• exclusive allocation takes about 10 native instructions

4/8/2014 27 A4B77ASS – Course 8

Serial collector

4/8/2014 28 A4B77ASS – Course 8

» young collection -> old generations collection serially in stop-the-world
fashion

» young generation:

» age of object (incremented every minor GC)

» efficiency is proportional to number of copied objects !

Young generation live object detection – IBM version

» maintains separate list of old-to-young references as they are created

» maintain the list during object promotion, introduce new, remove old

» red – old-to-young, blue – to old (don’t need trace during minor collection)

4/8/2014 29 A4B77ASS – Course 8

Young generation live object detection – Sun version

» identification of live objects based on card table structure (boolean)

» 512-byte chunks in old generation (smaller than memory page)

» every update to a reference marks dirty

» bytecode interpreter and JIT uses reference write barrier to maintain card
table

» only dirty cards are scanned for old-to-young references

» finally marks are cleared

4/8/2014 30 A4B77ASS – Course 8

» old and permanent generation:

• using mark-sweep-compact algorithm

• allocation can use bump-the-pointer technique

» default in Java 5.0 for client JVM

» effectively handles application with 64MB heaps

» -XX:+UseSerialGC

Serial collector

4/8/2014 31 A4B77ASS – Course 8

