
Architecture of software systems

Course 7: Threads, synchronization, atomic operations, non-blocking algorithms

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

Threads

» processes vs. threads

» both support concurrent execution

» one process has one or multiple threads

» threads share the same address space (data and code)

» context switching between threads is usually less expensive

» thread inter-communication is relatively efficient

» a thread executes sequence of code with own stack with frames

 t.getStackTrace()

» own local variables

» own method parameters

» thread creation by

» subclass of java.lang.Thread

» implementation of java.lang.Runnable

4/1/2014 2 A4B77ASS – Course 7

Threads

» Thread.currentThread()

» each thread has

» id – unique long id, only get

» name - get/set

» priority – get/set

» Thread.MIN_PRIORITY (1), NORM_PRIORITY (5), MAX_PRIORITY (10)

» thread group – get/set

» uncaught exception handler – get/set + get/setDefaultExceptionHandler

» UncaughtExceptionHandler

» daemon flag – is/set

» context class loader – get/set, used to load classes and resources inside

» interrupted – interrupt(), isInterrupted(), static interrupted()

» InterruptedException

» status – see next slide

4/1/2014 3 A4B77ASS – Course 7

Threads

» thread states - t.getState()

» new

» after creation

» runnable

» start()

» blocked

» waiting for a lock, (re)enter synchronized method/block

» waiting (can be interrupted)

» o.wait(), t.join(), LockSupport.park()

» timed waiting (can be interrupted)

» Thread.sleep(x), o.wait(x), t.join(x)

» LockSupport.parkNanos(x), LockSupport.parkUntil(time)

» terminated

» finished t.run() method, Runtime.exit(), t.stop()

» Thread.yield() – allow other threads to execute (nonpreemptive OS)
4/1/2014 4 A4B77ASS – Course 7

Threads – usage of Runnable

4/1/2014 5 A4B77ASS – Course 7

Threads – subclass of Thread

4/1/2014 6 A4B77ASS – Course 7

ExecutorService

» concept of thread pooling since 1.5

» suitable for execution of large number of asynchronous tasks

• e.g. HTTP requests in server

» reduce overhead with Thread creation for each task, context switching

» interface - java.util.concurrent.ExecutorService

• shutdown(), shutdownNow(), awaitTermination

• execute(Runnable r)

• Future<?> submit(Runnable r), Future<T> submit(Callable<T> c)

» java.util.concurrent.Future<T>

• boolean cancel(boolean mayInterruptIfRunning)

• isCancelled(), isDone()

• V get(), V get(long timeout, TimeUnit unit)

» java.util.concurrent.Executors (optionally with ThreadFactory)

• newSingleThreadExecutor()

• newFixedThreadPool(nThreads)

• newCachedThreadPool() – default 60 seconds keep-alive
4/1/2014 7 A4B77ASS – Course 7

Data races

» r1 and r2 are local variables

» A and B are shared variables (heap located) initially set to 0

» what can be the results for r1 and r2?

4/1/2014 ? 8 A4B77ASS – Course 7

Thread 1 Thread 2

r2 = A; r1 = B;

B = 1; A = 2;

Data races

» r1 and r2 are local variables

» A and B are shared variables (heap located) initially set to 0

» what can be the results for r1 and r2?

• r1=0, r2=0

• r1=1, r2=0

• r1=0, r2=2

• anything else?

4/1/2014 ? 9 A4B77ASS – Course 7

Thread 1 Thread 2

r2 = A; r1 = B;

B = 1; A = 2;

Synchronized

» each object is associated with monitor

» synchronized is implemented using monitors

» is this correct?

4/1/2014 ? 10 A4B77ASS – Course 7

Synchronized

» each object is associated with monitor

» synchronized is implemented using monitors

4/1/2014 11 A4B77ASS – Course 7

Reentrant locks

» java.util.concurrent.locks.ReentrantLock since 1.5

» extended operations in comparison to synchronized:

• lock(), unlock()

• lockInterruptibly() throws InterruptedException

• boolean tryLock()

• boolean tryLock(long timeout, TimeUnit unit) throws
InterruptedException

» fairness

• new ReentrantLock(boolean fair), by default unfair

• synchronized is unfair !

• fair locks are slower !

4/1/2014 12 A4B77ASS – Course 7

Synchronized VS. reentrant lock

» is this correct transformation?

4/1/2014 ? 13 A4B77ASS – Course 7

Synchronized VS. reentrant lock

» is this correct transformation?

» NO – need catch exceptions

4/1/2014 14 A4B77ASS – Course 7

Reentrant lock performance – test example

4/1/2014 15 A4B77ASS – Course 6

Reentrant lock performance – test example cont.

4/1/2014 16 A4B77ASS – Course 7

Reentrant lock performance - results

» Java on 2x Intel Xeon E5420 2.5GHz (8 cores in total)

» results for 8 threads:

LOCK operations/second 3 499 925

SYNC operations/second 1 104 862

LOCK operations/second 3 478 742

SYNC operations/second 1 149 406

LOCK operations/second 3 500 417

SYNC operations/second 1 121 584

» but ReentrantLock is standard object on heap

4/1/2014 17 A4B77ASS – Course 7

Deadlock - example

4/1/2014 18 A4B77ASS – Course 7

Thread run control – synchronized VS reentrant lock

4/1/2014 19 A4B77ASS – Course 7

Thread run control – stoppable task

4/1/2014 ? 20 A4B77ASS – Course 7

» is this correct?

Thread run control – stoppable task

4/1/2014 21 A4B77ASS – Course 4

» is this correct?

» NO – missing volatile

Volatile variable

» never cached thread-locally – all access directly to main memory

» guarantees atomic read and write operations (using memory barrier)

» can be used for both primitives and objects (references)

» don’t block thread execution

4/1/2014 ? 22 A4B77ASS – Course 7

Volatile variable

» never cached thread-locally – all access directly to main memory

» guarantees atomic read and write operations (using memory barrier)

» can be used for both primitives and objects (references)

» don’t block thread execution

4/1/2014 23 A4B77ASS – Course 7

Volatile variable

» never cached thread-locally – all access directly to main memory

» guarantees atomic read and write operations (using memory barrier)

» can be used for both primitives and objects (references)

» don’t block thread execution

» useful for one-thread write

» not suitable for read-update-write operations

» not necessary for:

• immutable objects

• variable accessed by only one thread

• where variable is within complex synchronized operation

4/1/2014 24 A4B77ASS – Course 7

Volatile example – multi-CPU

4/1/2014 ? 25 A4B77ASS – Course 7

» what value is returned while calling reader()?

Volatile example – multi-CPU

» memory changes made by one CPU can be propagated back to main
memory out-of-order

» correct behavior since JAVA 1.5 where memory barrier is used for volatile

• usage of specific CPU instruction to guarantee it

4/1/2014 26 A4B77ASS – Course 7

Volatile example – multi-CPU

» memory changes made by one CPU can be propagated back to main
memory out-of-order

» correct behavior since JAVA 1.5 where memory barrier is used for volatile

• usage of specific CPU instruction to guarantee it

» but what for multi-thread write and read-update-write operations ?

• synchronization / reentrant locks

• atomic operations

4/1/2014 27 A4B77ASS – Course 7

Atomic operations

» specific CPU instruction – CMPXCHG compare-and-exchange or
CAS (compare-and-swap)

» modern 64-bit processors support 128-bit CAS operations

» JAVA 5.0 utilizes 64-bit version in java.util.concurrent.atomic:

• AtomicBoolean

• AtomicInteger

• AtomicLong

• AtomicReference

» basic operations in AtomicInteger:

• int get(), set(int value), boolean compareAndSet(int expect, int update)

• int addAndGet(int delta)

• int incrementAndGet(), int decrementAndGet()

4/1/2014 28 A4B77ASS – Course 7

Atomic counter

» how is the atomic incrementAndGet implemented using CAS instruction?

4/1/2014 ? 29 A4B77ASS – Course 7

AtomicInteger – implementation

4/1/2014 30 A4B77ASS – Course 7

Volatile arrays

4/1/2014 ? 31 A4B77ASS – Course 7

» is this correct?

Volatile arrays – solution 1

» atomic array versions:

• AtomicIntegerArray

• AtomicLongArray

• AtomicReferenceArray

» basic operations for AtomicIntegerArray:

• int get(int i), set(int i, int newValue)-provides volatile access to member

• boolean compareAndSet(int i, int expectedValue, int newValue)

• int incrementAndGet(int i), int decrementAndGet(int i)

4/1/2014 32 A4B77ASS – Course 7

Volatile arrays – solution 2 – >=Java 1.5

» do not require wrapper object

» but slightly inefficient due to another read-write operation

» do not support read-update-write operations

4/1/2014 33 A4B77ASS – Course 7

Atomic field updaters

» suitable with large number of object of the given type – it saves memory

• don’t require single instance to have an extra object embedded

» refer variable “normally” without getter and setters

4/1/2014 34 A4B77ASS – Course 7

Atomic field updaters

» but beware of less efficient operations over atomic field updaters

» AtomicIntegerFieldUpdater:

» existing field updaters:

• AtomicIntegerFieldUpdater

• AtomicLongFieldUpdater

• AtomicReferenceFieldUpdater

» no array field updater exists

4/1/2014 35 A4B77ASS – Course 7

Atomic complex types

» AtomicMarkableReference:

• object reference along with a mark bit

» AtomicStampedReference:

• object reference along with an integer “stamp”

4/1/2014 36 A4B77ASS – Course 4

Atomic complex types

» AtomicMarkableReference:

• object reference along with a mark bit

» AtomicStampedReference:

• object reference along with an integer “stamp”

» notes:

• useful for ABA problem

‒ A -> B and B -> A, how can I know that A has been changed since the
last observation?

• doesn’t use double-wide CAS (CAS2, CASX) -> much slower than simple
atomic types due to object allocation

4/1/2014 37 A4B77ASS – Course 7

Non-blocking algorithms

» lock-free, wait-free, based on CAS instructions

» shared resources secured by locks:

• high-priority thread can be blocked (e.g. interrupt handler)

• parallelism reduced by coarse-grained locking (unfair locks)

• fine-grained locking and fair locks increases overhead

• can lead to deadlocks, priority inversion (low-priority thread holds a
shared resource which is required by high-priority thread)

» non-blocking algorithms properties:

• outperform blocking algorithms because most of CAS succeeds on the
first try

• removes cost for synchronization, thread suspension, context switching

» note: required for real-time systems

4/1/2014 38 A4B77ASS – Course 7

Non-blocking stack (LIFO)

» based on Treiber’s algorithm (1986)

4/1/2014 39 A4B77ASS – Course 7

Thread-safe collections and maps

» blocking variants:
• static<T> Collection<T> Collections.synchronizedCollection(Collection<T> c)

• static<T> List<T> Collections.synchronizedList(List<T> list)

• static<K,V> Map<K,V> Collections.synchronizedMap(Map<K,V> m)

• static<T> Set<T> Collections.synchronizedSet(Set<T> s)

• also for SortedSet and SortedMap

» non-blocking variants:
• ConcurrentLinkedQueue (interface Collection, Queue):

‒ E peek(), E poll(), add(E)

• ConcurrentHashMap (interface Map):

‒ putIfAbsent(K key, V value), remove(Object key, Object value)

‒ replace(K key, V oldValue, V newValue)

• ConcurrentSkipListMap (interface SortedMap), ConcurrentSkipListSet (interface SortedSet)

4/1/2014 40 A4B77ASS – Course 7

