
Architecture of software systems

Course 3: Basic design patterns

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

Immutable object

» thread-safe object

» all fields are final

 (and often private)

» no “setters”

» block changes by

 finalization of the class

» block override

 use private constr. and

 static factories

» don’t need a copy constr.

» no clone needed

» hashCode can use lazy

 initialization and cache

» no defensive copy when

 used as a field

» suitable for map and set

 elements
2/28/2012 2 A4B77ASS – Course 3

Immutable object - String

» special behavior of concatenation operator (+)

2/28/2012 ? 3 A4B77ASS – Course 3

Immutable object - String

» special behavior of concatenation operator (+)

» implemented through the StringBuilder and its append method

» but what about?

2/28/2012 ? 4 A4B77ASS – Course 3

Immutable object - String

» special behavior of concatenation operator (+)

» implemented through the StringBuilder and its append method

» but what about?

» implies 4 object allocations !!!

» consider manual usage of StringBuilder or StringBuffer (thread-safe)

2/28/2012 5 A4B77ASS – Course 3

Immutable object

» concatenation of non-String types:

» String.valueOf({primitives})

» or

» make collections/list/map/set immutable (UnsupportedOperationException):

» Collections.unmodifiableCollection(…)

» Collections.unmodifiableList(…)

» Collections.unmodifiableMap(…)

» Collections.unmodifiableSet(…)

» Collections.unmodifiableSortedMap(…)

» Collections.unmodifiableSortedSet(…)

» elements are not protected !!! use immutable elements too

2/28/2012 6 A4B77ASS – Course 3

Factory method

» creational design pattern

» based on the concept of factories

» define a method for creating objects in the interface which are subclasses
of specific product

» implementers can decide which class is instantiated (e.g. based on params)

» common usage

» toolkits and frameworks

» library code needs to create objects of types which are sub-classed
by application using the framework

» test-driven development

» unit tests can use fake objects to simulate operations

» limitations

» if use private constructors -> class cannot be extended

» if use protected constructors -> subclass must re-implement all factory
methods with exactly the same signatures (BUT if static still not work
properly !!!)

2/28/2012 7 A4B77ASS – Course 3

Factory method

» Creator can define default implementation returning default factory
product

» Note:

» static factory methods – cannot be overridden !

» Factory object can be instance

2/28/2012 8 A4B77ASS – Course 3

» product interface

» product A

Factory method – example

2/28/2012 9 A4B77ASS – Course 3

» product B

Factory method – example

2/28/2012 10 A4B77ASS – Course 3

» direct usage

» need change

all instantiations

to modify behavior

» factory method

» just one place

to modify behavior

Factory method – example

2/28/2012 11 A4B77ASS – Course 3

» delay operation until the first time it is needed

» lazy object creation

» lazy calculation of a value

» lazy class loading

» lazy other expensive process

» use a flag indicating that the process has taken place

» if not used save memory usage and/or processing time

» lazy class loading

» classes are loaded only when they are first referenced

» use interfaces or parent classes for field types

Lazy initialization

2/28/2012 12 A4B77ASS – Course 3

 VS

» higher importance for complex objects (e.g. Image, DB connection)

» used often for lazy hash code computation in immutable objects

Lazy initialization – example

2/28/2012 13 A4B77ASS – Course 3

» class has only one instance with a global point of access to it

» often used to control access to native resources like database connections
or sockets

» unique repository of state, alternatively can be implemented as static

» lazy instantiation:

Singleton

2/28/2012 ? 14 A4B77ASS – Course 3

» class has only one instance with a global point of access to it

» often used to control access to native resources like database connections
or sockets

» unique repository of state, alternatively can be implemented as static

» lazy instantiation:

» how to avoid locking?

Singleton

2/28/2012 ? 15 A4B77ASS – Course 3

» reduce the overhead of acquiring a lock by use of locking criterion

» common usage

» multi-threaded environment

» combination with lazy initialization

» typical situation

» check the locking criterion without obtaining the lock

» obtain the lock

» double-check whether the variable has been already initialized

» otherwise, initialize

Double-checked locking

2/28/2012 16 A4B77ASS – Course 3

Singleton – double-checked locking

» avoid expense of locking

2/28/2012 ? 17 A4B77ASS – Course 3

Singleton – double-checked locking

» avoid expense of locking

2/28/2012 ? 18 A4B77ASS – Course 3

Singleton – double-checked locking

» avoid expense of locking

» will this work fine ?

2/28/2012 ? 19 A4B77ASS – Course 3

Singleton – double-checked locking

» avoid expense of locking

» will this work fine ?

» yes, since JAVA 5

» no, in earlier VMs due to out-of-order writes (example from Sun and
IBM JDK 1.4)

2/28/2012 20 A4B77ASS – Course 3

Singleton – double-checked locking for Java <5.0

» will this work fine ?

2/28/2012 ? 21 A4B77ASS – Course 3

Singleton – double-checked locking for Java <5.0

» will this work fine ?

» NO – due to optimization

2/28/2012 22 A4B77ASS – Course 3

Singleton – eager initialization

» don’t allow subclassing due to static getInstance():

• factory class with method returning singleton instance (requires non-
private constructor)

» issue with more VMs in distributed system (e.g. RMI) -> singleton should
not be used to store state !!!

» classloaders -> one singleton per each classloader

» in older JVMs private static references for non-reachable objects was not
enough to keep that instance

2/28/2012 23 A4B77ASS – Course 3

» initialization on demand holder idiom

» inner class are not loaded until they are referenced

» BUT

» if construction fail, it throws NoClassDefFoundError

Singleton - lazy initialization – example

2/28/2012 24 A4B77ASS – Course 3

» is this correct singleton?

Singleton - example

2/28/2012 ? 25 A4B77ASS – Course 3

» is this correct singleton?

» NO – due to serialization which will create new instance

» Fix – using read resolve

Singleton - example

2/28/2012 26 A4B77ASS – Course 3

» parametric singleton, single instance with given parameter

» often in combination with immutable object

» beware memory consumption !

» use WeakReference or SoftReference

Multiton

2/28/2012 27 A4B77ASS – Course 3

» usage of reflection to create instance

» Fix 1

Breaking singleton or multiton

2/28/2012 28 A4B77ASS – Course 3

» usage of reflection to create instance

» Fix 2

Breaking singleton or multiton

2/28/2012 29 A4B77ASS – Course 3

» behavioral design pattern

» selection of algorithm in runtime

» define common interface for family of algorithms

» make different implementations interchangeable

» usually strategy is selected independently from clients that use it

Strategy

2/28/2012 30 A4B77ASS – Course 3

» Strategy

» Context

» Initialization

Strategy - example

2/28/2012 31 A4B77ASS – Course 3

Composite

2/28/2012 32 A4B77ASS – Course 3

» structural design pattern

» compose objects into tree structures

» group of objects are treated as a single instance of an object

» clients do not need to use difference between compositions and individuals

» component – interface

» leaf – behavior for primitive objects, no children

» composite – stores child

 components

» client – manipulates

 objects using component

» Example - Graphics

Iterator

2/28/2012 33 A4B77ASS – Course 3

» behavioral design pattern

» iterator is used to access elements of an aggregate object (Collection)

» sequential without exposing underlying implementation

» very common in Java libraries (Aggreagate – Iterable)

» Collection can be change only through iterator -> if changed throws
ConcurrentModificationException

» ListIterator - List.listIterator()

» hasPrevious(), previous()

» nextIndex(), previousIndex()

» add(...), set(…)

» Java 1.5

» works on arrays, anything implements Iterable

Iterator

2/28/2012 34 A4B77ASS – Course 3

» creational design pattern

» extension of Factory pattern

» encapsulate a group of individual factories having common theme

» user creates concrete implementation of abstract factory and then uses
generic interface to create concrete objects

Abstract Factory

2/28/2012 35 A4B77ASS – Course 3

Abstract Factory

2/28/2012 36 A4B77ASS – Course 3

» Example: multiple look-and-feels in GUIs

» behavioral design pattern

» encapsulate all information needed to call a method at a later time

» client

» instantiates the command

» provides information required

» invoker

» decides when to call the method

» receiver

» contains method’s code

» Example

» Thread pools (java.lang.Runnable)

» GUI Action

Command

2/28/2012 37 A4B77ASS – Course 3

