
Architecture of software systems

Course 14: Memory performance recommendations, references,

Intelligent systems, Multi-agent systems

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

» prefer short-lived immutable objects instead of long-lived mutable objects

» avoid needless allocations

• more frequent allocations will cause more frequent GCs

» large objects:

• expensive to allocate (not in TLAB, not in young)

• expensive to initialize (zeroing)

• can cause performance issues

• fragmentation for CMS (non-compacting) GC

» avoid frequent array-based re-sizing

• several allocations

• a lot of array copying

• use:

Performance recommendations

5/15/2012 2 A4B77ASS – Course 14

» objects in the wrong scope

Performance recommendations

5/15/2012 4 A4B77ASS – Course 14

» instances of inner classes have an implicit reference to the outer instance

» larger heap space for both generations -> less frequent GCs, lower GC
overhead, objects more likely to become dead (smaller heap -> fast
collection)

» tune size of young generation -> implies frequency of minor GCs, maximize
the number of objects released in young generation, it is better to copy
more than promote more

» tune tenuring distribution (-XX:+PrintTenuringDistribution),

» overall application footprint should not exceed physical memory !

» different Xms and Xmx implies full GC during resizing (consider Xms=Xmx)

Performance recommendations

5/15/2012 5 A4B77ASS – Course 14

» have a non-trivial finalize() method

» postmortem hook

» used for clean-up for unreachable object, typically reclaim native resources:

• GUI components

• file

• socket

Finalizable objects

5/15/2012 8 A4B77ASS – Course 14

» finalizable object allocation:

• slower - VM track finalizable objects

» finalizable object reclamation

• at least two GC cycles:

‒ identification and enqueue object on finalization queue

‒ reclaim space after finalize()

» not guaranteed when finalize() is called, whether is called (can exit earlier)
and the order in which it is called

» finalizable objects occupy memory longer along with everything reachable
from them !!!

» implementation based on references (see Finalizer class)

Finalizable objects

5/15/2012 9 A4B77ASS – Course 14

» subclassing issue

• delay reclamation of resources not explicitly used

• RGBImage1 inherit finalize() method

Finalizable objects - example

5/15/2012 10 A4B77ASS – Course 14

» contains reference instead of extends

» BUT no access to non-public, non-package

 members

Finalizable objects – example solution 1

5/15/2012 11 A4B77ASS – Course 14

» manual nulling

» BUT requires explicit disposal

Finalizable objects – example solution 2

5/15/2012 12 A4B77ASS – Course 14

» avoid finalizable objects (non-trivial finalize() method)

• slower allocation due to their tracking

• require at least two GC cycles:

‒ enqueues object on finalization queue

‒ reclaims space after finalize() completes

• beware of extending objects which define finalizers

Performance recommendations

5/15/2012 13 A4B77ASS – Course 14

» mortem hooks

» are more flexible than finalization

» types (ordered from strongest one):

• {strong reference}

• soft reference

• weak reference

• phantom references

» can enqueue the reference object on a designated reference queue when
GC finds its referent to be unreachable, referent is released

» references are added only if you have strong reference to REFERENCE !

» GC has to run !

Reference objects

5/15/2012 14 A4B77ASS – Course 12

» pre-mortal hook, pre-finalization processing

» usage:

• do not retain this object because of this reference

• canonicalizing map – e.g. ObjectOutputStream

• don't own target, e.g. listeners

• implement flexible version of finalization:

‒ prioritize

‒ decide when to run finalization

» get() returns

• referent if not reclaimed

• null, otherwise

» referent is cleared by GC (cleared before enqueued) -> need copy referent
to strong reference and check that it is not null !!!

» WeakHashMap<K,V> - uses weak keys

Weak reference

5/15/2012 15 A4B77ASS – Course 14

» pre-mortal hook, pre-finalization processing

» usage:

• reclaim only if there is “memory pressure” based on

• suitable for caches – create strong reference to data required to keep,
best for large objects

• would like to keep referent, but can loose it

» get() returns:

• referent if not reclaimed

• null, otherwise

» referent is cleared by GC (cleared before enqueued)

Soft reference

5/15/2012 18 A4B77ASS – Course 14

» post-mortal hook, post-finalization processing

» designed to be safer than finalizer as the object cannot be resurrected ->
not true !

» usage:

• notifies that the object is no longer used

• keep some data after the object becomes collected

» get() returns:

• null always

» have to specify reference queue for constructor

» referent is not collected until all references are not become unreachable

» referent is not cleared automatically, referent can be cleared by method
clear()

Phantom reference

5/15/2012 19 A4B77ASS – Course 14

Reachability of an object

5/15/2012 20 A4B77ASS – Course 14

Reachability of an object

5/15/2012 ? 21 A4B77ASS – Course 14

» intelligent system integrates concepts of artificial intelligence such as:

• knowledge reprepresentation and expert systems

• advanced search methods

• mathematical reasoning methods

• nature inspired computing: artificial neural networks and genetic
algorithms

• agent-based computing: distributed artificial intelligence and
multi-agent systems

Intelligent systems

5/15/2012 23 A4B77ASS – Course 14

» autonomous agents and multi-agent systems (also referred to as

 agent-based computing):

• a specific sub-field of computer science and artificial intelligence,

• investigates the concepts of autonomous decision making,
communication and coordination, distributed planning and distributed
learning but also game-theoretic aspects of competitive behavior or
logical formalization of higher level knowledge structures representing
interaction attitude of actors in multi-actor environment.

A multi-agent system is a decentralized computational (software) system,
often distributed (or at least open to distribution across hardware platforms)
whose behavior is defined and implemented by means of complex, peer-to-
peer interaction among autonomous, rational and deliberative units – agents.

Introduction to agents #1

5/15/2012 24 A4B77ASS – Course 14

An agent is an encapsulated computational (or physical, even human) system,
that is situated in some environment, and that is capable of flexible,
autonomous behavior in order to meet its design objective (Wooldridge, 2000).
The agent can exists on its own but often is a component of a multi-agent
system.

Agent technology provides a set of tools, algorithms and methodologies for
development of distributed, asynchronous intelligent software applications
that leverage the above listed theories.

Introduction to agents #2

5/15/2012 25 A4B77ASS – Course 14

» Autonomy – the agent is accountable for execution of its own actions and is
not controlled from outside. Often the agent’s reasoning mechanism that
selects the action to be executed is unknown from outside of the agent
(unlike e.g. objects).

» Reactivity – the agent is able react qucikly to the events in the environment
and to the requests from other agents, it is able to reconsider its activity
according to the change of the environment in timely fashion. Often the
longest reasoning cycle of an agent needs to perform faster than the fastest
change in the environment (calculative rationality).

» Intentionality – the agents is able to maintain its long term intention
encoded by the agent’s designer and is capable to consider both the long
term intentions and immediate reactive inputs when selecting the next
action.

» Social capability – the agent is able to interact, collaborate, form teams but
also to perform different levels of reasoning about the other agents.

Key properties of an autonomous intelligent agent

5/15/2012 26 A4B77ASS – Course 14

Agents design levels:

» organization-level: related to the agent communities as a whole
(organizational structure, trust, norms, obligations, self-organization, etc.);

» interaction-level: concern communication among agents (languages,
interaction protocols, negotiations, resource allocation mechanisms);

» agent-level: concern individual agents (agent architecture, reasoning,
learning, local processing of social knowledge).

Agent concepts

5/15/2012 27 A4B77ASS – Course 14

objects - computational entity with its encapsulated state, ability to perform
methods on the state and communicating with the other objects via message
passing

» lesser degree of autonomy - possibility to have a public method

» joint goal is set-up at the design-time

» multi-agent systems are inherently multi-threaded

expert systems - the most important technology of the 1980’s

» expert systems are disembodied from the environment

» expert systems are not capable of reactive and proactive behavior

» expert systems are not equipped with the social ability

Similar concepts

5/15/2012 28 A4B77ASS – Course 14

» manufacturing: planning highly complex production, control of dynamic,
unpredictable, unstable processes, diagnostics, repair,
reconfiguration/replanning.

» virtual enterprises: forming business alliances, forming long-term/short-
term deals, managing supply chains.

» internet agents: mainly for intelligent shopping and auctioning, information
retrieval and searching, remote access to information and remote system
control.

» transport: intelligent car, public transport, logistic and material handling,
but also peace-keeping missions, military maneuvers, etc.

» collective robotics operations: cooperation and autonomy in the group of
robotic entities (UAS, ground vehicles, unattended sensors), replacement of
teleoperation with autonomous decision making

» utility networks: energy distribution networks, mobile operators networks,
cable provider networks - simulation and predication of alarm situations,
prevention to black-out and overload, intrusion detection.

Agent domains

5/15/2012 29 A4B77ASS – Course 14

» Reactive agents are agents that contain no symbolic knowledge
representation (ie: no state, no representation of the environment, no
representation of the other agents, ...). Their behaviour is defined by a set
of perception-action rules.

rules × percept → action

Agent architectures #1

5/15/2012 30 A4B77ASS – Course 14

The classical approach to building agents is to view them as a particular type of
knowledge-based system, and bring all the associated methodologies of such
systems to bear. We define a deliberative agent or SR agent architecture to be
one that:

» contains an explicitly represented, symbolic model of the world;

» makes decisions (e.g. about what actions to perform) via symbolic
reasoning.

Agent architectures #2

5/15/2012 31 A4B77ASS – Course 14

Belief-desire-intention (BDI) model is framework for reasoning about formal
abstract models of mental states (based on Theory of Practical Reasoning).

» contains representations (as objects, data structures, or whatever) of:

• beliefs, which constitute its knowledge of the state of its environment
(and perhaps also some internal state),

• desires, which determine its motivation what it is trying to bring about,
maintain, find out, etc.,

• intentions, which capture its decisions about how to act in order to
fulfill its desires (committed desires)

» intention is something between the agents’ state of mind (belief) and the
immediate action to be performed

» unlike desire/goal an intention may be seen as agents immediate
commitment to implementing an action.

Agent architectures #3

5/15/2012 32 A4B77ASS – Course 14

From the point of view of interaction among agents we distinguish:

» Open systems

• Interaction among various types of agents from different developers

• Common understanding of messages is necessary – specification of
message structure

• May act as self-interested and try to harm others/whole system

‒ security issues

• Strong emphasis on interoperability

» Closed systems

• Interact with a predefined set of agents known to the developer in
advance

• Proprietary data formats can be used

• Interoperability can be sacrificed for the sake of performance
optimizations

Interaction schemes

5/15/2012 33 A4B77ASS – Course 14

Foundation for Intelligent Physical Agents - FIPA

» Founded to create specification that will ensure interoperability among
agents

» Complete set of specifications from different categories:

• agent communication

• agent transport

• agent management

• abstract architecture and applications

» Most significant for agent interoperability is agent communication and
transport

FIPA specifications #1

5/15/2012 34 A4B77ASS – Course 14

Agent communication language

5/15/2012 35 A4B77ASS – Course 14

Mobile agents are characterized by code mobility

» Mobile agents travel to places, where they perform tasks on behalf of a user

» Reason why to travel - insufficient computational power, unreliable
communication, remote data source

» Security issues

» Mobility vs. cloning, stand-in agents

Types of agent mobility

» Strong mobility - mobility of code, data and execution state, transparent for
the computational process, requires support from the OS and execution
environment

» Weak mobility - only the code and data are transferred, intentional mobility

Mobile agents #1

5/15/2012 36 A4B77ASS – Course 14

Problems with agent mobility

» Various operating systems, programming languages, agent platforms

» Security features - permissions, authorities, access control

» Necessity to transfer all required data, libraries

» Interaction with message transport system - new communication address,
delivery of messages received by old message transport

Mobile agents #2

5/15/2012 37 A4B77ASS – Course 14

Important aspect especially in the case of open systems

» Thread-safe agent execution model which holds rest of the system harmless
against agent failure

» Communication security

• message encryption/signing

• security certificates with public/private keys

» Trust and reputation models to create a set of trustful collaborators in open
systems

» Protect private knowledge of individual agents

Security

5/15/2012 38 A4B77ASS – Course 14

