
Architecture of software systems

Course 13: NIO networking, Data structures, memory management with garbage collector

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

JAVA networking – NIO – Channel, Selector

» one thread works with multiple channels at the same time

» Channel – cover UDP+TCP network IO, file IO

• FileChannel – from Input/OutputStream or RandomAccessFile

• DatagramChannel

• MulticastChannel (since 1.7)

• SocketChannel

• ServerSocketChannel

5/10/2012 2 A4B77ASS – Course 13

JAVA networking – NIO – Channel

» Channel

• read/write at the same time (streams are only one-way)

• always read/write from/to a buffer

• channel.transferFrom(int pos, int count, Channel source), transferTo …

5/10/2012 3 A4B77ASS – Course 13

JAVA networking – NIO – Selector

» Selector

• Selector Selector.open();

• only channels in non-blocking mode can be registered

‒ channel.configureBlocking(false);

‒ SelectionKey channel.register(selector, SelectionKey.OP_READ);

• FileChannel doesn’t support non-blocking mode !

» SelectionKey – events you can listen for (can be combined together)

• OP_CONNECT

• OP_ACCEPT

• OP_READ

• OP_WRITE

» events are filled by channel which is ready with operation

5/10/2012 4 A4B77ASS – Course 13

JAVA networking – NIO – Selector

» SelectionKey – returned from register method

• interest set – your configured ops

• ready set – which ops are ready, sk.isReadable(), sk.isWritable(), …

• the channel

• selector

• optional attached object – sk.attach(Object obj); Object sk.attachment()

‒ SelectionKey channel.register(selector, ops, attachmentObj);

» Selector with registered one or more channels

• int select() – blocks until at least one channel is ready

• int select(long timeout) – with timeout milliseconds

• int selectNow() – doesn’t block at all, returns immediately

• return the number of channels which are ready from the last call !

‒ Set<SelectionKey> selector.selectedKeys();

5/10/2012 5 A4B77ASS – Course 13

JAVA networking – NIO – Selector

5/10/2012 6 A4B77ASS – Course 13

JAVA networking – NIO – Selector, SocketChannel

» Selector (cont.)

• wakeUp() – different thread can “wake up” thread blocked in select()

• close() – invalidates selector, channels are not closed

» SocketChannel

• can be configured as non-blocking before connecting

• SocketChannel socket.getChannel();

• SocketChannel SocketChannel.open();

• sch.connect(…)

• write(…) and read(…) may return without having written/read anything
for non-blocking channel !

5/10/2012 7 A4B77ASS – Course 13

JAVA networking – NIO

» ServerSocketChannel

• can be configured as non-blocking

• can be created directly using open() or from ServerSocket

• accept() – returns SocketChannel in the same mode

» DatagramChannel

• can be configured as non-blocking

• can be created directly using open() or from DatagramSocket

• receive(…), send(…)

» FileChannel

• cannot be non-blocking !

• support – direct buffers, mapped files, locking

5/10/2012 8 A4B77ASS – Course 13

Data structures

» primitives: boolean, byte, char, int, long, float, double

• without implicit allocation

• placed in frame in variables or operand stack

» objects

• every object is descendant of Object by default

‒ methods – clone(), equals, getClass(), hashCode(), wait(…), notify
(…), finalize()

• objects for primitives: Boolean, Byte, Char, Integer, Long, Float, Double

• can be null

• other objects

» arrays

• special data structure which store a number of items of the same type
in linear order; have the defined limit

• JAVA automatically check limitations

• allocated on the heap

• multi-dimensional arrays = arrays of arrays; ragged array
5/10/2012 9 A4B77ASS – Course 13

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa

» since JAVA 5

» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

» works only during assignment or parameter passing

» example: count word frequency/histogram

» boxing and un-boxing brings inefficiencies !

5/10/2012 12 A4B77ASS – Course 13

NO

Example

» what is the output? and what is the output for i=2000 and j=2000 ?

true true

true false

true true

» but not after serialization, there is no readResolve !

5/10/2012 14 A4B77ASS – Course 13

Integer – usage of identity semantics

» similar concept as in multiton

5/10/2012 15 A4B77ASS – Course 13

Integer

5/10/2012 16 A4B77ASS – Course 13

Widening vs. autoboxing

» what are the outputs?

 long Integer

» why?

 prefer widening cannot use autoboxing

 before autoboxing to widen primitives

 -> error if no

 hello(Integer) method

5/10/2012 18 A4B77ASS – Course 13

Example

» what is the outputs?

5/10/2012 ? 19 A4B77ASS – Course 13

Example

» what is the outputs?

100 - because we are removing Integers instead of Short !!

» correct:

5/10/2012 20 A4B77ASS – Course 13

Method overloading

» method is identified by its signature

» can be compiled and what is the output?

• YES – no ambiguity

method with parameter type – String

» due to JLS specification:

 “The Java programming language uses the rule that the most specific
method is chosen.”

5/10/2012 22 A4B77ASS – Course 13

Method overloading

» can be compiled and what is the output?

» NO – cannot find “most specific”, both are sub-classes of Object but not
in the same inheritance hierarchy

5/10/2012 24 A4B77ASS – Course 13

Method overloading

» can be compiled and what is the output?

• YES

method with param types – String, Object

5/10/2012 26 A4B77ASS – Course 13

Method overloading

» BUT

» this cannot be compiled – cannot identify “most specific”

5/10/2012 27 A4B77ASS – Course 13

Method overloading

» can be compiled and what is the output?

• YES

Collection

- compile time resolution not run-time type

5/10/2012 29 A4B77ASS – Course 13

JVM Memory

5/10/2012 30 A4B77ASS – Course 13

Memory management

» explicit vs. automatic

• no crashes due to errors – e.g. usage of de-allocated objects

• no space leaks

» garbage collection managed by garbage collector

• live objects (transiently reachable from roots – thread frames, static
fields) remain in memory

• dead are reclaimed

» desired characteristics:

• allocation performance - find a block of unused memory with certain
size

• avoid fragmentation (e.g. by compaction)

• efficiency without long pauses in application run

• no bottleneck for multi-threaded (multi-CPUs) systems

» design architectures:

• serial vs. parallel

• concurrent vs. stop-the-world

• compacting vs. non-compacting vs. copying

5/10/2012 31 A4B77ASS – Course 13

Generational concept

» heap divided into generations based on object ages:

• young – frequent GC, small size -> fast GC

• old – rare GC, large size -> slow GC

» promotion (tenuring) objects based on survival of objects during GC

» based on weak generational hypothesis:

• most allocated objects are not referenced for long – they die young

• few references from older to younger object exist

» need track old-to-young references

5/10/2012 32 A4B77ASS – Course 13

JAVA heap layout

» minor (young) vs. major (old) GC – different algorithms

» major GC can be invoked by young GC if there is no space in tenured space

5/10/2012 33 A4B77ASS – Course 13

Fast allocation

» based on bump-the-pointer technique

• track previously allocated object

• fit new object into remainder of generation end

» thread-local allocation buffers (TLABs)

• remove concurrency bottleneck

• each thread has very small exclusive area (about 1% of Eden in total)

• infrequent full TLABs implies synchronization (based on CAS)

• exclusive allocation takes about 10 native instructions

5/10/2012 34 A4B77ASS – Course 13

Serial collector

5/10/2012 35 A4B77ASS – Course 13

» young collection -> old generations collection serially in stop-the-world
fashion

» young generation:

» age of object (incremented every minor GC)

» efficiency is proportional to number of copied objects !

» maintains separate list of old-to-young references as they are created

» maintain the list during object promotion, introduce new, remove old

red – old-to-young, blue – to old (don’t need trace during minor collection)

Young generation live object detection – IBM version

5/10/2012 36 A4B77ASS – Course 13

» identification of live objects based on card table structure (boolean)

» 512-byte chunks in old generation (smaller than memory page)

» every update to a reference marks dirty

» bytecode interpreter and JIT uses reference write barrier to maintain card
table

» only dirty cards are scanned for old-to-young references

» finally marks are cleared

Young generation live object detection – Sun version

5/10/2012 37 A4B77ASS – Course 10

» old and permanent generation:

• using mark-sweep-compact algorithm

• allocation can use bump-the-pointer technique

» default in Java 5.0 for client JVM

» effectively handles application with 64MB heaps

» -XX:+UseSerialGC

Serial collector

5/10/2012 38 A4B77ASS – Course 13

» utilize more cores/CPUs

» still stop-the-world but in parallel manner for young generation

» uses the same serial mark-sweep-compact algorithm for old generation

» default for server JVM from Java 5.0

» -XX:+UseParallelGC

Parallel collector

5/10/2012 39 A4B77ASS – Course 13

» introduced in J2SE 5.0 update 6

» no change in young generation collection – use parallel one

» old and permanent generations:

• done in stop-the-world manner

• each generation logically divided into fixed-sized regions

• parallel mark phase:

‒ initiated by divided reachable live objects

‒ info about live objects (size & location) are propagated to the
corresponding region data

Parallel compacting collector

5/10/2012 40 A4B77ASS – Course 13

• summary phase (implemented in serial):

‒ identify density of regions (due to previous compactions, more
dense are at the beginning)

‒ find from which region it has sense to do compaction regarding
recovered from a region:

» dense prefix – before, no movement

‒ calculate new location of each live data for each region

• compaction phase:

‒ parallel copy of data based on the summary data

‒ finally heap is packed and large empty block is at the end

» -XX:+UseParallelOldGC , -XX:ParallelGCThreads=n

» default in J2SE 6.0 for multi core/CPU systems

Parallel compacting collector

5/10/2012 41 A4B77ASS – Course 13

» low-latency collector

» use the same parallelized young generation collector

» old generation:

• done concurrently with the application execution

• initial mark – short pause identifying the initial set of live objects
directly reachable

• remark – revisiting

 modified objects

 (overhead)

• concurrent sweep

Concurrent mark-sweep (CMS) collector

5/10/2012 42 A4B77ASS – Course 13

» non-compacting

» cannot use bump-the-pointer

» more expensive allocation searching a region

» extra overhead to young generation collection doing promotions

» may split or join free block depending on tracked popular object sizes

» collector started:

• adaptively based on previous runs (how long it takes, how many is free)

• initiating occupancy in percentage

 -XX:CMSInitiatingOccupancyFraction=n

 default 68

» decreases pauses

» requires larger heap due to concurrent collection

» incremental mode – concurrent phases divided into small chunks between
young generation collection

» -XX:+UseConcMarkSweepGC , -XX:+CMSIncrementalMode

Concurrent mark-sweep (CMS) collector

5/10/2012 43 A4B77ASS – Course 13

» explicit type:

• -XX:+UseSerialGC, -XX:+UseParallelGC,

 -XX:+UseParallelOldGC, -XX:+UseConcMarkSweepGC

» statistics:

• -XX:+PrintGC, -XX:+PrintGCDetails,

 -XX:+PrintGCTimeStamps,

 -XX:+PrintTenuringDistribution

» heap sizing:

• -Xmx – max heap size, default 64MB on client JVM, influence to
throughput

• -Xms - initial heap size

• -XX:MinHeapFreeRatio=min – default 40, per generation

• -XX:MaxHeapFreeRatio=max – default 70

• -XX:NewSize=n - initial size of young generation

• -XX:MaxNewSize=n

Configure garbage collector

5/10/2012 44 A4B77ASS – Course 13

» heap sizing cont.:

• -XX:NewRatio=n - ratio between young and old gens

 default 2 client JVM, 8 server JVM (young includes survivor),

 n=2 => 1:2 => young is 1/3 of total heap

• -XX:SurvivorRatio=n – ratio between each survivor and Eden

 default 32, n=32 => 1:32 => each survivor is 1/34 of young size

• -XX:MaxTenuringThreshold=<threshold>

• -XX:PermSize=n - initial size of permanent generation

• -XX:MaxPermSize=n - max size of permanent generation

» parallel collector & parallel compacting collector:

• -XX:ParallelGCThreads=n -number of GC threads

• -XX:MaxGCPauseMillis=n - maximum pause time goal

• -XX:GCTimeRatio=n - throughput goal

 1/(1-n) percentage of total time for GC, default n=99 (1%)

Configure garbage collector

5/10/2012 45 A4B77ASS – Course 13

» CMS collector:

• -XX:+CMSIncrementalMode – default disabled

• -XX:ParallelGCThreads=n

• -XX:CMSInitiatingOccupancyFraction=<percent>

• -XX:+UseCMSInitiatingOccupancyOnly - disable automatic
initiating occupancy

• -XX:+CMSClassUnloadingEnabled - by default disabled !!!

• -XX:CMSInitiatingPermOccupancyFraction=<percent>
- unloading has to be enabled !!!

• -XX:+ExplicitGCInvokesConcurrent

• -XX:+ExplicitGCInvokesConcurrentAndUnloadClasses

 - both useful when want to references / finalizers to be processed

Configure garbage collector

5/10/2012 46 A4B77ASS – Course 13

