Architecture of software systems

Course 12: Memory management, garbage collectors

David Sislak
david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

Concurrent mark-sweep (CMS) collector

» low-latency collector for old generation
» reported as ConcurrentMarkSweep in memory telemetry
» done concurrently with the application execution

» initial mark — short pause identifying the initial set of live objects directly
reachable from roots; one thread

» concurrent mark — traversal of objects; all reference modification are
monitored by changed flag

» remark — revisiting serial Mark Sweep-compact concurrent Mark-Sweep
Collector Collector
modified objects
(overhead); but parallel
— TYYYYY

» concurrent sweep —no . — S

compaction

e CONCUITENE Mark

flf “““*mml::

5/5/2015

Concurrent mark-sweep (CMS) collector

»

»

»

»

»

»

»

»

»

a) Start of Sweeping

hon-compacting SN0

cannot use bump-the-pointer allocation 5) £nd of Sweeping

more expensive allocation searching a region UL UL L0

extra overhead to young generation collection doing promotions

may split or join free block depending on tracked popular object sizes
collector started:
» adaptively based on previous runs (how long it takes, how many is free)
* initiating occupancy in percentage
-XX:CMSInitiatingOccupancyFraction=n
default 68
decreases pauses
requires larger heap due to concurrent collection

incremental mode — concurrent phases divided into small chunks between
young generation collection

-XX:+UseConcMarkSweepGC , -XX:+CMSIncrementalMode

5/5/2015 A4B77ASS — Course 12 3

mixed G1 collector

» the latest GC (introduced in Java 6 update 14)
» whole heap divided into regions (by def. about 2000 regions 1-32MB)

» no explicit separation between generations, only regions are mapped to
generational spaces (generation is set of regions, changing in time)

E | Eden Space

Survivor Space

. Old Generation

» compacting -> enables bump-the-pointer, TLABs, uses CAS

» compaction = copy live from a region to an empty region
» keep Humongous regions (sequence) for objects >=50% regions size
» maintain list of free regions for constant time

5/5/2015 A4B77ASS — Course 12 4

mixed G1 collector — minor GC

» stop-the-world approach with parallel threads

» live object are copied (from eden and survivor regions) into one or more
new survivor regions

» if aging threshold is met => promoted into old generation regions
G1 G1

» G1 uses Remembered Set (RS) monitoring cross region references — ignore
inter-region and null references

» mechanism based on memory barrier for modification of object
reference

» 512 bytes cards in each regions with corresponding dirty flag for each

5/5/2015 reglion A4B77ASS — Course 12 5

mixed G1 collector — major GC

» combination of CMS and parallel compacting collector
» runsimmediately after minor GC if heap occupancy threshold is met
-XX:InitiatingHeapOccupancyPercent=n (defualt 45%)

* initial mark based on SATB (snapshot-at-the-beginning)
— stop-the-world

* concurrent marking and region-based stats generation

* remark
— stop-the-world
— reclaim empty regions
* reclaim old regions (no sweeping using regions)

— pick regions with low live ratio .

— only few are collected per such GC based on
-XX:MaxGCPauseMillis=n (default 200ms)

— |leave garbage in regions with high live ratio

5/5/2015 A4B77ASS — Course 12 6

Garbage collectors relation

Young generation

XX:+UseSerialGC Serial

-XX:+UseConcMarkSweepGC| CMS

N

Serial Old
(MSC)

Tenured generation

SETa SZ:L‘;'%& XX:+UsePRarallelGC
\ /xx:ﬁUseParNech
Parallel Old | -XX:+UseParallelOldGC

5/5/2015 A4B77ASS — Course 12

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa
» since JAVA 5
» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

int myInt = 3;
nyInt.toString () ;

5/5/2015 A4B77ASS — Course 12 ?8

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa
» since JAVA 5
» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

int myInt = 3;
nyInt.toString () ;

» works only during assignment or parameter passing

String a = myInt4+"";

5/5/2015 A4B77ASS — Course 12 ?9

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa
» since JAVA 5
» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

int myInt = 3;
nyInt.toString () ;

» works only during assignment or parameter passing

StriMmt#'"; Integer. toString (myInt) ;

» example: count word frequency/histogram

public =tatic wvoid main (5tring[] arg=s) {
Map«<S5tring, Integer> m = new TreeMap<String, Integer>():
for (5tring word : args) |
Integer freq = m.get (word) :
m.put (word, (freq == mmll ? 1 : fregq + 1))
}
System.ocut.println (m) ;

» boxing and un-boxing brings inefficiencies !

5/5/2015 A4B77ASS — Course 12 10

Example

int i = 2;

int j = 2;

ArrayList<Integer> list = new ArraylList<Integer>().:

li=zt.add(i):

list.add(j):

System.out.printf (Boolean. toString(i==3j)):
Syastem.out.printf (Boolean. toStringi(list.get (0)==list.get (1))):
System.ocut.printf (Boolean. toString(list.get (0) .equals (list.get (1)))) :

» what is the output? and what is the output for i=2000 and j=2000 ?

5/5/2015 A4B77ASS — Course 12 ?11

Example

int i = 2;

int j = 2;

ArrayList<Integer> list = new ArraylList<Integer>().:

li=zt.add(i):

list.add(j):

System.out.printf (Boolean. toString(i==3j)):
Syastem.out.printf (Boolean. toStringi(list.get (0)==list.get (1))):
System.ocut.printf (Boolean. toString(list.get (0) .equals (list.get (1)))) :

» what is the output? and what is the output for i=2000 and j=2000 ?

true true
true false
true true

» but not after serialization, there is no readResolve !

5/5/2015 A4B77ASS — Course 12

12

Performance recommendations

» prefer short-lived immutable objects instead of long-lived mutable objects
» avoid needless allocations
* more frequent allocations will cause more frequent GCs
» large objects:
* expensive to allocate (not in TLAB, not in young)
* expensive to initialize (zeroing)
e can cause performance issues
* fragmentation for CMS (non-compacting) GC
» avoid force System.gc() except well-defined application phases
e canbeignoredby -XX:+DisableExplicitGC
» avoid frequent array-based re-sizing
* several allocations
* alot of array copying

* use:
ArrayList<String> list = new ArrayList<String>(1024) ;

5/5/2015 A4B77ASS — Course 12 13

Performance recommendations

» avoid finalizable objects (non-trivial finalize() method)
* slower allocation due to their tracking
* require at least two GC cycles:
— enqueues object on finalization queue
— reclaims space after finalize() completes
* beware of extending objects which define finalizers
— use reference instead of extending
— manual nulling

5/5/2015 A4B77ASS — Course 12

14

Performance recommendations

» use lazy initialization

class Foo {
private String[] names;
public void doIt(int length) {
if (names == null || names.length < length)
names = new String[length];
populate (names) ;

print (names) ;

5/5/2015 A4B77ASS — Course 12 ?15

Performance recommendations

» ObjeCtS in the wrong scope
class Foo {

private String[] names;

public void doIt(int length) {

if (names == null || names.length < length)

names = new String[length];
populate (names) ;

print (names) ;

}

class Foo {

\ 4

public void dolIt(int length) {

String[] names = new String[length];

populate (names) ;

print (names) ;

}

5/5/2015 A4B77ASS — Course 12

16

Performance recommendations

» instances of inner classes have an implicit reference to the outer instance

» larger heap space for both generations -> less frequent GCs, lower GC
overhead, objects more likely to become dead (smaller heap -> fast
collection)

» tune size of young generation -> implies frequency of minor GCs, maximize
the number of objects released in young generation, it is better to copy
more than promote more

» tune tenuring distribution (-XX:+PrintTenuringDistribution),

Desired survivor size 6684672 bytes, new threshold § (max o“

- age 1: 2315488 bytes, 2315488 total ;§

- age 2: 19528 bytes, 2335016 total ,§

- age 3: 96 bytes, 2335112 total <%

- age 4 32 bytes, 2335144 total N
01 Youngest New-Allocated Object Age Oldest

» overall application footprint should not exceed physical memory !
» different Xms and Xmx implies full GC during resizing (consider Xms=Xmx)

5/5/2015 A4B77ASS — Course 12 17

