
Architecture of software systems

Course 12: Memory management, garbage collectors

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

» low-latency collector for old generation

» reported as ConcurrentMarkSweep in memory telemetry

» done concurrently with the application execution

» initial mark – short pause identifying the initial set of live objects directly
reachable from roots; one thread

» concurrent mark – traversal of objects; all reference modification are
monitored by changed flag

» remark – revisiting

 modified objects

 (overhead); but parallel

» concurrent sweep – no

compaction

Concurrent mark-sweep (CMS) collector

5/5/2015 2 A4B77ASS – Course 10

» non-compacting

» cannot use bump-the-pointer allocation

» more expensive allocation searching a region

 extra overhead to young generation collection doing promotions

» may split or join free block depending on tracked popular object sizes

» collector started:

• adaptively based on previous runs (how long it takes, how many is free)

• initiating occupancy in percentage

 -XX:CMSInitiatingOccupancyFraction=n

 default 68

» decreases pauses

» requires larger heap due to concurrent collection

» incremental mode – concurrent phases divided into small chunks between
young generation collection

» -XX:+UseConcMarkSweepGC , -XX:+CMSIncrementalMode

Concurrent mark-sweep (CMS) collector

5/5/2015 3 A4B77ASS – Course 12

» the latest GC (introduced in Java 6 update 14)

» whole heap divided into regions (by def. about 2000 regions 1-32MB)

» no explicit separation between generations, only regions are mapped to
generational spaces (generation is set of regions, changing in time)

» compacting -> enables bump-the-pointer, TLABs, uses CAS

» compaction = copy live from a region to an empty region

» keep Humongous regions (sequence) for objects >=50% regions size

» maintain list of free regions for constant time

mixed G1 collector

5/5/2015 4 A4B77ASS – Course 12

» stop-the-world approach with parallel threads

» live object are copied (from eden and survivor regions) into one or more
new survivor regions

» if aging threshold is met => promoted into old generation regions

» G1 uses Remembered Set (RS) monitoring cross region references – ignore
inter-region and null references

» mechanism based on memory barrier for modification of object
reference

» 512 bytes cards in each regions with corresponding dirty flag for each
region

mixed G1 collector – minor GC

5/5/2015 5 A4B77ASS – Course 12

» combination of CMS and parallel compacting collector

» runs immediately after minor GC if heap occupancy threshold is met

 -XX:InitiatingHeapOccupancyPercent=n (defualt 45%)

• initial mark based on SATB (snapshot-at-the-beginning)

‒ stop-the-world

• concurrent marking and region-based stats generation

• remark

‒ stop-the-world

‒ reclaim empty regions

• reclaim old regions (no sweeping using regions)

‒ pick regions with low live ratio

‒ only few are collected per such GC based on

 -XX:MaxGCPauseMillis=n (default 200ms)

‒ leave garbage in regions with high live ratio

mixed G1 collector – major GC

5/5/2015 6 A4B77ASS – Course 12

Garbage collectors relation

5/5/2015 7 A4B77ASS – Course 12

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa

» since JAVA 5

» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

5/5/2015 ? 8 A4B77ASS – Course 12

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa

» since JAVA 5

» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

» works only during assignment or parameter passing

5/5/2015 ? 9 A4B77ASS – Course 12

Autoboxing, Unboxing

» automatic conversion from primitive to object representation and vice versa

» since JAVA 5

» for example

» autoboxing for Integer is based on valueOf(int) and intValue() methods

» works only during assignment or parameter passing

» example: count word frequency/histogram

» boxing and un-boxing brings inefficiencies !

5/5/2015 10 A4B77ASS – Course 12

Example

» what is the output? and what is the output for i=2000 and j=2000 ?

5/5/2015 ? 11 A4B77ASS – Course 12

Example

» what is the output? and what is the output for i=2000 and j=2000 ?

true true

true false

true true

» but not after serialization, there is no readResolve !

5/5/2015 12 A4B77ASS – Course 12

» prefer short-lived immutable objects instead of long-lived mutable objects

» avoid needless allocations

• more frequent allocations will cause more frequent GCs

» large objects:

• expensive to allocate (not in TLAB, not in young)

• expensive to initialize (zeroing)

• can cause performance issues

• fragmentation for CMS (non-compacting) GC

» avoid force System.gc() except well-defined application phases

• can be ignored by -XX:+DisableExplicitGC

» avoid frequent array-based re-sizing

• several allocations

• a lot of array copying

• use:

Performance recommendations

5/5/2015 13 A4B77ASS – Course 12

» avoid finalizable objects (non-trivial finalize() method)

• slower allocation due to their tracking

• require at least two GC cycles:

‒ enqueues object on finalization queue

‒ reclaims space after finalize() completes

• beware of extending objects which define finalizers

‒ use reference instead of extending

‒ manual nulling

Performance recommendations

5/5/2015 14 A4B77ASS – Course 12

» use lazy initialization

Performance recommendations

5/5/2015 ? 15 A4B77ASS – Course 12

» objects in the wrong scope

Performance recommendations

5/5/2015 16 A4B77ASS – Course 12

» instances of inner classes have an implicit reference to the outer instance

» larger heap space for both generations -> less frequent GCs, lower GC
overhead, objects more likely to become dead (smaller heap -> fast
collection)

» tune size of young generation -> implies frequency of minor GCs, maximize
the number of objects released in young generation, it is better to copy
more than promote more

» tune tenuring distribution (-XX:+PrintTenuringDistribution),

» overall application footprint should not exceed physical memory !

» different Xms and Xmx implies full GC during resizing (consider Xms=Xmx)

Performance recommendations

5/5/2015 17 A4B77ASS – Course 12

