Architecture of software systems

Course 10: Data structures, memory management , garbage collector, references

David Sislak
david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

Data structures

» primitives: boolean, byte, char, int, long, float, double
» without implicit allocation
» placed in frame in variables or operand stack

» objects (object header structure overhead)
» every object is descendant of Object by default

» methods — clone(), equals, getClass(), hashCode(), wait(...), notify
(...), finalize()

» objects for primitives: Boolean, Byte, Character, Integer, Long, Float,
Double; can be null; all are immutable objects (final values)

» other objects
» arrays

» special data structure which store a number of items of the same type
in linear order; have the defined limit

» JAVA automatically check limitations
» allocated on the heap

» multi-dimensional arrays = arrays of arrays; ragged array

4/21/2015 A4B77ASS — Course 10

JVM Memory

Stack Non Heap Heap

(VARV}

Minor Major
Garbage Garbage
Collection Collection

Permanent " Old / Tenured
Thread I Code Cache Genaration Young Generation Generation
Program Counter —
I Interned
- Strings
Stack Native Stack
| 2
A 3
| s |
<)
Method Area B B
[° g
o}
"N 7
I/ I ,

Frame

Ogel‘arld
Local Variables ok mTort Glans

Return Value D]]m \IA/ Constant Pool Class Data
Reference " -
1>

Run-Time Constant Pool

string constants

numeric constants

class references

Method
field refe
el rences ode

name and type

invoke dynamic

I method references

thread isolated all threads

4/21/2015 A4B77ASS — Course 10 23

Memory management

» explicit vs. automatic
* no crashes due to errors — e.g. usage of de-allocated objects
* no memory (space) leaks

» garbage collection managed by garbage collector

* live objects (transiently reachable from roots — thread frames, static
fields) remain in memory

e dead are reclaimed
» desired garbage collection characteristics:

* allocation performance - find a block of unused memory with certain

size

* avoid fragmentation (e.g. by compaction)

» efficiency without long pauses in application run

* no bottleneck for multi-threaded (multi-core/multi-CPUs) systems
» design architectures:

* serial vs. parallel

e concurrent vs. stop-the-world

* compacting vs. non-compacting vs. copying

4/21/2015 A4B77ASS — Course 10 25

Generational concept

» heap divided into generations based on object ages:
* young — frequent GC, small size -> fast GC
e old-rare GC, large size -> slow GC
» promotion (tenuring) objects based on survival of objects during GC
» based on weak generational hypothesis:
* most allocated objects are not referenced for long — they die young
» few references from older to younger object exist
» need track old-to-young references

Track These
(Remembered Set) -

l Object Allocation

Young Generation

. Object Promotion

Old Generation

4/21/2015 A4B77ASS — Course 10 26

JAVA heap layout

» minor (young) vs. major (old) GC — different algorithms
» major GC can be invoked by young GC if there is no space in tenured space

Survivor Ratio

| <

From

Eden Space Space

Young Generation §

Tenured Space

Old Generation

Permanent Generation

4/21/2015 A4B77ASS — Course 10 27

Fast object allocation

» based on bump-the-pointer technique
* track previously allocated object
* fit new object into remainder of generation end
» thread-local allocation buffers (TLABs)
* remove concurrency bottleneck
* each thread has very small exclusive area (few % of Eden in total)
* infrequent full TLABs implies synchronization (based on CAS)
* exclusive allocation takes about 10 native instructions

4/21/2015 A4B77ASS — Course 10 28

Serial collector

» young collection -> old generations collection serially in stop-the-world

fashion > I > I_"'
Application GC Pause
» young generation:

. . : Ti
» age of object (incremented every minor GC) ol -

» efficiency is proportional to number of copied objects !
Young Generation

RIS, DI e
From ™ %
zec gt R

old Generation

4/21/2015 A4B77ASS — Course 10 29

Serial collector

» old and permanent generation:

* using mark-sweep-compact algorithm
* allocation can use bump-the-pointer technique

a) start of Compaction
XL XX L X[X

b) End of Compaction

L XL

» default in Java 5.0 for client JVM
» effectively handles application with 64MB heaps
» -XX:4+UseSerialGC

4/21/2015 A4B77ASS — Course 8

32

Finalizable objects

» have a non-trivial finalize() method

» finalize hook

» used for clean-up for unreachable object, typically reclaim native resources:
* GUI components
« file
* socket

public static class Imagel {
private int nativelmg;

'
private native void disposeNative():
public void dispose () { disposeNativel(); 1}

protected void finalize() { dispose(); }

static private Imagel randomImg:

4/21/2015 A4B77ASS — Course 10 33

Finalizable objects

»

»

»

»

»

4/21/2015

finalizable object allocation:

* slightly slower because VM must track finalizable objects
finalizable object reclamation

* atleast two GC cycles:

— identification and enqueue object on finalization queue (only one !)
— reclaim space after finalize()

not guaranteed when finalize() is called, whether is called (can exit earlier)
and no control of priority (one queue sequence of all finalizable objects)

finalizable objects occupy memory longer along with everything reachable
from them !!!

implementation based on references (see Finalizer class)

b5 ob3 b
©D] acdded to _©D]
created finalization finalized p,
, queue reclaimed
ob]
unreachable GC GC

A4R7L§('nur<p 0 ¥ l - 34

Time

il

Reference objects

»

»

»

»

»

»

mortem hooks
are more flexible than finalization
reference types (ordered from strongest one):

* {strong reference}

* soft reference

* weak reference

* phantom references

can enqueue the reference object on a designated reference queue when
GC finds its referent to be unreachable, referent is released

references are enqueued only if you have strong reference to REFERENCE !
GC has to run ! Reference Referent

e—- rEf Tty

4/21/2015 ref = new WeakReference(foo, rq); -

Weak reference

» pre-finalization processing
» usage:
* do not retain this object because of this reference
* canonicalizing map — e.g. ObjectOutputStream
* don't own target, e.g. listeners
* implement flexible version of finalization:
— prioritize
— decide when to run finalization
» get() returns
* referent if not reclaimed
* null, otherwise
» referentis cleared by GC (cleared before enqueued) and can be collected

» need copy referent to strong reference and check that it is not null before
using it !!!
» WeakHashMap<K,V> - uses weak keys

4/21/2015 A4B77ASS — Course 10 36

Weak reference example

» Nativelmage3 cannot be inner non-static class (due to strong ref)

))) img = new Image3();
final =tatic clas=s Nativelmagel extend=s WeakBReference<Image3» {

private int nativeImg: Image3 Nativelmage3 List

private mative void disposeNativel():
vold dispose () {
dizposeNative () ;
reflList.remove (this)

Reference
Queue

H

static private Referencefueue<Imagel’> reflusus;

static private List<NativeImage3> reflist;

static Referencefuene<Image3> referencefueue () {
retuorn reffusus;

H

NativeImage3 (Image3 img) img = null; and after a subsequent GC...

super (img, refQusus); Nativelmage3 List
reflList.add (this):;

X

public class Imaged {

private Hativelmagel nativelmd; Reterence
SO,

public void dispose () { nativelmg.dispose(}: }

4/21/2015 A4B77ASS — Course 10 37

Weak reference example

» own “clean-up” thread

REeferencefueue<Image3> reffueue =
NativeImage3l. referencefusnuns() ;!
while (true) {
HativeImage3 nativelmg =
(HativeImage3) refQueue.remove ()
nativelmy.disposel():

» clean-up before creation of new objects
» limited clean-up processing to mitigate long processing
» use poll() — non-blocking fetch of first

4/21/2015 A4B77ASS — Course 10 38

Soft reference

» pre-finalization processing
» usage:
* would like to keep referent, but can loose it
* reclaim only if there is “memory pressure” based on heap usage

* suitable for caches — create strong reference to data required to keep,
best for large objects

e all are cleared before OutOfMemoryError
>

v

get() returns:
* referent if not reclaimed
* null, otherwise
* updates timestamp of usage (can keep recently used longer)

» referentis cleared by GC (cleared before enqueued) and can be collected

v

4/21/2015 A4B77ASS — Course 10 39

Phantom reference

» post-finalization processing
» usage:
* notifies that the object is no longer used
* keep some data after the object becomes finalized
» get() returns:
* null always
» have to specify reference queue for constructor

» referent is not collected until all phantom references are not become
unreachable or manually cleared

» internal referent reference is not cleared automatically, it can be cleared by
method clear()

4/21/2015 A4B77ASS — Course 10 40

Reachability of an object

=oftly
Feachahle
Created » Initialized p _SrOngly Finalized
Feachahble v
Whiakly
Heachahle
FPhantom |
Feachahle
Java Heap
Unreachable Objects B
(narbage)
\'«-.
Root Set of ES
References R ;
A 5
Weakly |
‘Weak ‘ By '
Reference Reachable .
objects '
Strongly E‘ 3
4/21/2015 Reachahle 41

Reachability of an object

Waak
Referanca Reference
O Soft Phantom
Referance Referance
Casa 1 Cage 2 Casge 3

4/21/2015

A4B77ASS — Course 10

242

Parallel minor garbage collector

» utilize more cores/CPUs, known as throughput garbage collector
» In memory telemetry reported as ParNew or PS Scavenge

» still stop-the-world but in parallel manner for young generation
» fragmentation in survivor area; no ages like in serial GC

Serial Collector Parallel Collector Edan m
(]
+—— Stop-theworld pause —»

T T2 T3

» default for server JVM from Java 5.0 or when requested by
-XX:4+UseParNewGC or -XX:+UseParallelGC

» the number of threads controlled by - XX : ParallelGCThreads=n
4/21/2015 A4B77ASS — Course 10 44

Parallel major compacting collector

» reported as PS Mark Sweep
» can be used only with minor PS Scavenge
» done in stop-the-world manner
» each generation (old/permanent) logically divided into fixed-sized regions
» parallel mark phase:
— initiated by divided reachable root objects

— info about live objects (size & location) are propagated to the
corresponding region data

R3: 36

4/21/2015 A4B77ASS — Course 10 45

Parallel major compacting collector

» summary phase (implemented in serial):

— identify density of regions (due to previous compactions, older objects
should be on the left, younger to right side)

— find from which region (starting from the left side) it has sense to do
compaction regarding recovered from a region:

» dense prefix — left regions which are not collected

— calculate new location of each live data for each region; most right
regions will fill most left ones

Destination region SOUrce ragion

4/2 46

Dense prefix

Parallel major compacting collector

» parallel compaction/sweeping phase:

— divide not moving regions (compacting to themselves), and fully
reclaimed regions among threads

— each thread first compact/copy/clear the region itself and then start
filling it by designated right regions

— no synchronization needed, only one thread operate per each region

— finally heap is packed and large empty block is at the right end

H1 Hz H3 Het

» default for server JVM from Java 5.0 or when requested by
-XX:4+UseParallelO1dGC

» the number of threads controlled by - XX :ParallelGCThreads=n
4/21/2015 A4B77ASS — Course 10 47

