
Architecture of software systems

Course 10: Data structures, memory management , garbage collector, references

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

Data structures

» primitives: boolean, byte, char, int, long, float, double

» without implicit allocation

» placed in frame in variables or operand stack

» objects (object header structure overhead)

» every object is descendant of Object by default

» methods – clone(), equals, getClass(), hashCode(), wait(…), notify
(…), finalize()

» objects for primitives: Boolean, Byte, Character, Integer, Long, Float,
Double; can be null; all are immutable objects (final values)

» other objects

» arrays

» special data structure which store a number of items of the same type
in linear order; have the defined limit

» JAVA automatically check limitations

» allocated on the heap

» multi-dimensional arrays = arrays of arrays; ragged array
4/21/2015 2 A4B77ASS – Course 10

JVM Memory

4/21/2015 23 A4B77ASS – Course 10

all threads thread isolated

Memory management

» explicit vs. automatic

• no crashes due to errors – e.g. usage of de-allocated objects

• no memory (space) leaks

» garbage collection managed by garbage collector

• live objects (transiently reachable from roots – thread frames, static
fields) remain in memory

• dead are reclaimed

» desired garbage collection characteristics:

• allocation performance - find a block of unused memory with certain
size

• avoid fragmentation (e.g. by compaction)

• efficiency without long pauses in application run

• no bottleneck for multi-threaded (multi-core/multi-CPUs) systems

» design architectures:

• serial vs. parallel

• concurrent vs. stop-the-world

• compacting vs. non-compacting vs. copying

4/21/2015 25 A4B77ASS – Course 10

Generational concept

» heap divided into generations based on object ages:

• young – frequent GC, small size -> fast GC

• old – rare GC, large size -> slow GC

» promotion (tenuring) objects based on survival of objects during GC

» based on weak generational hypothesis:

• most allocated objects are not referenced for long – they die young

• few references from older to younger object exist

» need track old-to-young references

4/21/2015 26 A4B77ASS – Course 10

JAVA heap layout

» minor (young) vs. major (old) GC – different algorithms

» major GC can be invoked by young GC if there is no space in tenured space

4/21/2015 27 A4B77ASS – Course 10

Fast object allocation

» based on bump-the-pointer technique

• track previously allocated object

• fit new object into remainder of generation end

» thread-local allocation buffers (TLABs)

• remove concurrency bottleneck

• each thread has very small exclusive area (few % of Eden in total)

• infrequent full TLABs implies synchronization (based on CAS)

• exclusive allocation takes about 10 native instructions

4/21/2015 28 A4B77ASS – Course 10

Serial collector

4/21/2015 29 A4B77ASS – Course 10

» young collection -> old generations collection serially in stop-the-world
fashion

» young generation:

» age of object (incremented every minor GC)

» efficiency is proportional to number of copied objects !

» old and permanent generation:

• using mark-sweep-compact algorithm

• allocation can use bump-the-pointer technique

» default in Java 5.0 for client JVM

» effectively handles application with 64MB heaps

» -XX:+UseSerialGC

Serial collector

4/21/2015 32 A4B77ASS – Course 8

» have a non-trivial finalize() method

» finalize hook

» used for clean-up for unreachable object, typically reclaim native resources:

• GUI components

• file

• socket

Finalizable objects

4/21/2015 33 A4B77ASS – Course 10

» finalizable object allocation:

• slightly slower because VM must track finalizable objects

» finalizable object reclamation

• at least two GC cycles:

‒ identification and enqueue object on finalization queue (only one !)

‒ reclaim space after finalize()

» not guaranteed when finalize() is called, whether is called (can exit earlier)
and no control of priority (one queue sequence of all finalizable objects)

» finalizable objects occupy memory longer along with everything reachable
from them !!!

» implementation based on references (see Finalizer class)

Finalizable objects

4/21/2015 34 A4B77ASS – Course 10

» mortem hooks

» are more flexible than finalization

» reference types (ordered from strongest one):

• {strong reference}

• soft reference

• weak reference

• phantom references

» can enqueue the reference object on a designated reference queue when
GC finds its referent to be unreachable, referent is released

» references are enqueued only if you have strong reference to REFERENCE !

» GC has to run !

Reference objects

4/21/2015 35 A4B77ASS – Course 12

» pre-finalization processing

» usage:

• do not retain this object because of this reference

• canonicalizing map – e.g. ObjectOutputStream

• don't own target, e.g. listeners

• implement flexible version of finalization:

‒ prioritize

‒ decide when to run finalization

» get() returns

• referent if not reclaimed

• null, otherwise

» referent is cleared by GC (cleared before enqueued) and can be collected

» need copy referent to strong reference and check that it is not null before
using it !!!

» WeakHashMap<K,V> - uses weak keys

Weak reference

4/21/2015 36 A4B77ASS – Course 10

» NativeImage3 cannot be inner non-static class (due to strong ref)

Weak reference example

4/21/2015 37 A4B77ASS – Course 10

» own “clean-up” thread

» clean-up before creation of new objects

» limited clean-up processing to mitigate long processing

» use poll() – non-blocking fetch of first

Weak reference example

4/21/2015 38 A4B77ASS – Course 10

» pre-finalization processing

» usage:

• would like to keep referent, but can loose it

• reclaim only if there is “memory pressure” based on heap usage

• suitable for caches – create strong reference to data required to keep,
best for large objects

• all are cleared before OutOfMemoryError

» get() returns:

• referent if not reclaimed

• null, otherwise

• updates timestamp of usage (can keep recently used longer)

» referent is cleared by GC (cleared before enqueued) and can be collected

Soft reference

4/21/2015 39 A4B77ASS – Course 10

» post-finalization processing

» usage:

• notifies that the object is no longer used

• keep some data after the object becomes finalized

» get() returns:

• null always

» have to specify reference queue for constructor

» referent is not collected until all phantom references are not become
unreachable or manually cleared

» internal referent reference is not cleared automatically, it can be cleared by
method clear()

Phantom reference

4/21/2015 40 A4B77ASS – Course 10

Reachability of an object

4/21/2015 41 A4B77ASS – Course 10

Reachability of an object

4/21/2015 ? 42 A4B77ASS – Course 10

» utilize more cores/CPUs, known as throughput garbage collector

» In memory telemetry reported as ParNew or PS Scavenge

» still stop-the-world but in parallel manner for young generation

» fragmentation in survivor area; no ages like in serial GC

» default for server JVM from Java 5.0 or when requested by

 -XX:+UseParNewGC or -XX:+UseParallelGC

» the number of threads controlled by -XX:ParallelGCThreads=n

Parallel minor garbage collector

4/21/2015 44 A4B77ASS – Course 10

» reported as PS Mark Sweep

» can be used only with minor PS Scavenge

» done in stop-the-world manner

» each generation (old/permanent) logically divided into fixed-sized regions

» parallel mark phase:

‒ initiated by divided reachable root objects

‒ info about live objects (size & location) are propagated to the
corresponding region data

Parallel major compacting collector

4/21/2015 45 A4B77ASS – Course 10

» summary phase (implemented in serial):

‒ identify density of regions (due to previous compactions, older objects
should be on the left, younger to right side)

‒ find from which region (starting from the left side) it has sense to do
compaction regarding recovered from a region:

» dense prefix – left regions which are not collected

‒ calculate new location of each live data for each region; most right
regions will fill most left ones

Parallel major compacting collector

4/21/2015 46 A4B77ASS – Course 10

» parallel compaction/sweeping phase:

‒ divide not moving regions (compacting to themselves), and fully
reclaimed regions among threads

‒ each thread first compact/copy/clear the region itself and then start
filling it by designated right regions

‒ no synchronization needed, only one thread operate per each region

‒ finally heap is packed and large empty block is at the right end

» default for server JVM from Java 5.0 or when requested by

 -XX:+UseParallelOldGC

» the number of threads controlled by -XX:ParallelGCThreads=n

Parallel major compacting collector

4/21/2015 47 A4B77ASS – Course 10

