
Architecture of software systems

Course 10: Memory management with garbage collector, references

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

» young collection -> old generations collection serially in stop-the-world
fashion

» young generation:

» reported as Copy in telemetry

» age of object (incremented every minor GC)

» efficiency is proportional to number of copied objects !

Serial minor garbage collector

4/16/2013 2 A4B77ASS – Course 10

» old and permanent generation:

• using mark-sweep-compact algorithm

• allocation can use bump-the-pointer technique

» default client JVM from Java 5.0 or when requested by

 -XX:+UseSerialGC

» effectively handles application with 64MB heaps

» In memory telemetry reported as MarkSweepCompact

Serial major garbage collector

4/16/2013 5 A4B77ASS – Course 10

» utilize more cores/CPUs, known as throughput garbage collector

» In memory telemetry reported as ParNew or PS Scavenge

» still stop-the-world but in parallel manner for young generation

» fragmentation in survivor area; no ages like in serial GC

» default for server JVM from Java 5.0 or when requested by

 -XX:+UseParNewGC or -XX:+UseParallelGC

» the number of threads controlled by -XX:ParallelGCThreads=n

Parallel minor garbage collector

4/16/2013 6 A4B77ASS – Course 10

» reported as PS Mark Sweep

» can be used only with minor PS Scavenge

» done in stop-the-world manner

» each generation (old/permanent) logically divided into fixed-sized regions

» parallel mark phase:

‒ initiated by divided reachable root objects

‒ info about live objects (size & location) are propagated to the
corresponding region data

Parallel major compacting collector

4/16/2013 7 A4B77ASS – Course 10

» summary phase (implemented in serial):

‒ identify density of regions (due to previous compactions, older objects
should be on the left, younger to right side)

‒ find from which region (starting from the left side) it has sense to do
compaction regarding recovered from a region:

» dense prefix – left regions which are not collected

‒ calculate new location of each live data for each region; most right
regions will fill most left ones

Parallel major compacting collector

4/16/2013 8 A4B77ASS – Course 10

» parallel compaction/sweeping phase:

‒ divide not moving regions (compacting to themselves), and fully
reclaimed regions among threads

‒ each thread first compact/copy/clear the region itself and then start
filling it by designated right regions

‒ no synchronization needed, only one thread operate per each region

‒ finally heap is packed and large empty block is at the right end

» default for server JVM from Java 5.0 or when requested by

 -XX:+UseParallelOldGC

» the number of threads controlled by -XX:ParallelGCThreads=n

Parallel major compacting collector

4/16/2013 9 A4B77ASS – Course 10

» low-latency collector

» reported as ConcurrentMarkSweep in memory telemetry

» done concurrently with the application execution

» initial mark – short pause identifying the initial set of live objects directly
reachable from roots; one thread

» concurrent mark – traversal of objects; all reference modification are
monitored by changed flag

» remark – revisiting

 modified objects

 (overhead); but parallel

» concurrent sweep – no

compaction

Concurrent mark-sweep (CMS) collector

4/16/2013 10 A4B77ASS – Course 10

» non-compacting

» cannot use bump-the-pointer allocation

» more expensive allocation searching a region

 extra overhead to young generation collection doing promotions

» may split or join free block depending on tracked popular object sizes

» collector started:

• adaptively based on previous runs (how long it takes, how many is free)

• initiating occupancy in percentage

 -XX:CMSInitiatingOccupancyFraction=n

 default 68

» decreases pauses

» requires larger heap due to concurrent collection

» incremental mode – concurrent phases divided into small chunks between
young generation collection

» -XX:+UseConcMarkSweepGC , -XX:+CMSIncrementalMode

Concurrent mark-sweep (CMS) collector

4/16/2013 11 A4B77ASS – Course 10

» the latest GC (introduced in Java 6 update 14)

» whole heap divided into regions (by def. about 2000 regions 1-32MB)

» no explicit separation between generations, only regions are mapped to
generational spaces (generation is set of regions, changing in time)

» compacting -> enables bump-the-pointer, TLABs, uses CAS

» compaction = copy live from a region to an empty region

» keep Humongous regions (sequence) for objects >=50% regions size

» maintain list of free regions for constant time

mixed G1 collector

4/16/2013 12 A4B77ASS – Course 10

» stop-the-world approach with parallel threads

» live object are copied (from eden and survivor regions) into one or more
new survivor regions

» if aging threshold is met => promoted into old generation regions

» G1 uses Remembered Set (RS) monitoring cross region references – ignore
inter-region and null references

» mechanism based on memory barrier for modification of object
reference

» 512 bytes cards in each regions with corresponding dirty flag for each
region

mixed G1 collector – minor GC

4/16/2013 13 A4B77ASS – Course 10

» combination of CMS and parallel compacting collector

» runs immediately after minor GC if heap occupancy threshold is met

 -XX:InitiatingHeapOccupancyPercent=n (defualt 45%)

• initial mark based on SATB (snapshot-at-the-beginning)

‒ stop-the-world

• concurrent marking and region-based stats generation

• remark

‒ stop-the-world

‒ reclaim empty regions

• reclaim old regions (no sweeping using regions)

‒ pick regions with low live ratio

‒ only few are collected per such GC based on

 -XX:MaxGCPauseMillis=n (default 200ms)

‒ leave garbage in regions with high live ratio

mixed G1 collector – major GC

4/16/2013 14 A4B77ASS – Course 10

Garbage collectors relation

4/16/2013 15 A4B77ASS – Course 10

» explicit type:

• -XX:+UseSerialGC, -XX:+UseParallelGC,

 -XX:+UseParallelOldGC, -XX:+UseConcMarkSweepGC

 -XX:+UseG1GC

» statistics:

• -XX:+PrintGC, -XX:+PrintGCDetails,

 -XX:+PrintGCTimeStamps,

 -XX:+PrintTenuringDistribution

» heap sizing:

• -Xmx – max heap size, default 64MB on client JVM, influence to
throughput

• -Xms - initial heap size

• -XX:MinHeapFreeRatio=min – default 40, per generation

• -XX:MaxHeapFreeRatio=max – default 70

• -XX:NewSize=n - initial size of young generation

• -XX:MaxNewSize=n

Configure garbage collector

4/16/2013 16 A4B77ASS – Course 10

» heap sizing cont.:

• -XX:NewRatio=n - ratio between young and old gens

 default 2 client JVM (young includes survivor),

 n=2 => 1:2 => young is 1/3 of total heap

• -XX:SurvivorRatio=n – ratio between each survivor and Eden

 default 32, n=32 => 1:32 => each survivor is 1/34 of young size

• -XX:MaxTenuringThreshold=<threshold>

• -XX:PermSize=n - initial size of permanent generation

• -XX:MaxPermSize=n - max size of permanent generation

» parallel collector & parallel compacting collector:

• -XX:ParallelGCThreads=n -number of GC threads

• -XX:MaxGCPauseMillis=n - maximum pause time goal

• -XX:GCTimeRatio=n - throughput goal

 1/(1-n) percentage of total time for GC, default n=99 (1%)

Configure garbage collector

4/16/2013 17 A4B77ASS – Course 10

» CMS collector:

• -XX:+CMSIncrementalMode – default disabled

• -XX:ParallelGCThreads=n

• -XX:CMSInitiatingOccupancyFraction=<percent>

• -XX:+UseCMSInitiatingOccupancyOnly - disable automatic
initiating occupancy (auto ergonomics)

• -XX:+CMSClassUnloadingEnabled - by default disabled !!!

• -XX:CMSInitiatingPermOccupancyFraction=<percent>
- unloading has to be enabled !!!

• -XX:+ExplicitGCInvokesConcurrent

• -XX:+ExplicitGCInvokesConcurrentAndUnloadClasses

 - both useful when want to references / finalizers to be processed

Configure garbage collector

4/16/2013 18 A4B77ASS – Course 10

» have a non-trivial finalize() method

» postmortem hook

» used for clean-up for unreachable object, typically reclaim native resources:

• GUI components

• file

• socket

Finalizable objects

4/16/2013 19 A4B77ASS – Course 10

» finalizable object allocation:

• slower because VM must track finalizable objects

» finalizable object reclamation

• at least two GC cycles:

‒ identification and enqueue object on finalization queue (only one !)

‒ reclaim space after finalize()

» not guaranteed when finalize() is called, whether is called (can exit earlier)
and the order in which it is called

» finalizable objects occupy memory longer along with everything reachable
from them !!!

» implementation based on references (see Finalizer class)

Finalizable objects

4/16/2013 20 A4B77ASS – Course 10

» subclassing issue

• delayed reclamation of resources not explicitly used

• RGBImage1 inherit finalize() method

Finalizable objects - example

4/16/2013 21 A4B77ASS – Course 10

» contains reference instead of extends

» BUT no access to non-public, non-package

 members

Finalizable objects – example solution 1

4/16/2013 22 A4B77ASS – Course 10

» manual nulling

» BUT requires explicit disposal

Finalizable objects – example solution 2

4/16/2013 23 A4B77ASS – Course 10

» mortem hooks

» are more flexible than finalization

» types (ordered from strongest one):

• {strong reference}

• soft reference

• weak reference

• phantom references

» can enqueue the reference object on a designated reference queue when
GC finds its referent to be unreachable, referent is released

» references are enqueued only if you have strong reference to REFERENCE !

» GC has to run !

Reference objects

4/16/2013 24 A4B77ASS – Course 12

» pre-finalization processing

» usage:

• do not retain this object because of this reference

• canonicalizing map – e.g. ObjectOutputStream

• don't own target, e.g. listeners

• implement flexible version of finalization:

‒ prioritize

‒ decide when to run finalization

» get() returns

• referent if not reclaimed

• null, otherwise

» referent is cleared by GC (cleared before enqueued) and can be collected

» need copy referent to strong reference and check that it is not null before
using it !!!

» WeakHashMap<K,V> - uses weak keys

Weak reference

4/16/2013 25 A4B77ASS – Course 10

» NativeImage3 cannot be inner non-static class (due to strong ref)

Weak reference example

4/16/2013 26 A4B77ASS – Course 10

» own “clean-up” thread

Weak reference example

4/16/2013 27 A4B77ASS – Course 10

» pre-finalization processing

» usage:

• would like to keep referent, but can loose it

• reclaim only if there is “memory pressure” based on heap usage

• suitable for caches – create strong reference to data required to keep,
best for large objects

• all are cleared before OutOfMemoryError

» get() returns:

• referent if not reclaimed

• null, otherwise

• updates timestamp of usage (can keep recently used longer)

» referent is cleared by GC (cleared before enqueued) and can be collected

Soft reference

4/16/2013 28 A4B77ASS – Course 10

» post-finalization processing

» usage:

• notifies that the object is no longer used

• keep some data after the object becomes finalized

» get() returns:

• null always

» have to specify reference queue for constructor

» referent is not collected until all references are not become unreachable or
manually cleared

» internal referent reference is not cleared automatically, it can be cleared by
method clear()

Phantom reference

4/16/2013 29 A4B77ASS – Course 10

Reachability of an object

4/16/2013 30 A4B77ASS – Course 10

Reachability of an object

4/16/2013 ? 31 A4B77ASS – Course 10

Phantom reference example

4/16/2013 32 A4B77ASS – Course 10

» prefer short-lived immutable objects instead of long-lived mutable objects

» avoid needless allocations

• more frequent allocations will cause more frequent GCs

» large objects:

• expensive to allocate (not in TLAB, not in young)

• expensive to initialize (zeroing)

• can cause performance issues

• fragmentation for CMS (non-compacting) GC

» avoid force System.gc() except well-defined application phases

• can be ignored by -XX:+DisableExplicitGC

» avoid frequent array-based re-sizing

• several allocations

• a lot of array copying

• use:

Performance recommendations

4/16/2013 33 A4B77ASS – Course 10

» avoid finalizable objects (non-trivial finalize() method)

• slower allocation due to their tracking

• require at least two GC cycles:

‒ enqueues object on finalization queue

‒ reclaims space after finalize() completes

• beware of extending objects which define finalizers

‒ use reference instead of extending

‒ manual nulling

Performance recommendations

4/16/2013 34 A4B77ASS – Course 10

» use lazy initialization

Performance recommendations

4/16/2013 ? 35 A4B77ASS – Course 10

» objects in the wrong scope

Performance recommendations

4/16/2013 36 A4B77ASS – Course 10

» instances of inner classes have an implicit reference to the outer instance

» larger heap space for both generations -> less frequent GCs, lower GC
overhead, objects more likely to become dead (smaller heap -> fast
collection)

» tune size of young generation -> implies frequency of minor GCs, maximize
the number of objects released in young generation, it is better to copy
more than promote more

» tune tenuring distribution (-XX:+PrintTenuringDistribution),

» overall application footprint should not exceed physical memory !

» different Xms and Xmx implies full GC during resizing (consider Xms=Xmx)

Performance recommendations

4/16/2013 37 A4B77ASS – Course 10

