agent
technology
center

Architecture of Software Systems
Distributed Components, CORBA

Martin Rehak

CORBA is OMG's open, vendor-independent specification
for an architecture and infrastructure that computer
applications use to work together over networks.
Interoperability results from two key parts of the
specification: OMG Interface Definition Language
(OMG IDL), and the standardized protocols GIOP and
[IOP®. These allow a CORBA-based program from any
vendor, on almost any computer, operating system,
programming language, and network, to interoperate
with a CORBA-based program from the same or
another vendor, on almost any other computer,
operating system, programming language, and
network. (ome webpagel

CORBA — Distributed Objects

Common Object Request Broker Architecture

Platform and language independent standard for
distributed computing: object management,
method invocation, error handling,...

Deeply influenced subsequent distributed
computing frameworks

Currently rarely used in new projects, but
supports/influences many current technologies:
— DL

— 1IOP (+ HTTP/SSL version)

— CORBA Component Model

Overview

Client Servant (Object Implementation)

Static Dynamic ORB Static IDL = Dynamic Portable

Invocation Invocation Interface Skeleton Skeleton Object
Interface Interface Interface Adaptor

(IDL Stubs)

Historical Perspective

* Three versions of standard:
— CORBA 1: IDL
— CORBA 2: Interoperability and I1IOP
— CORBA 3: CORBA Component Model

Historical Perspective

e Three versions of standard:

— CORBA 1: IDL [90ies]

» “false start with CORBA 1.0, which was not
interoperable and provided only a C mapping ”

— CORBA 2: Interoperability and IIOP [1997]

 “standardized protocol and a C++ language mapping,
with a Java language mapping following in 1998.”

— CORBA 3: CORBA Component Model [1999]

* “The failure of CCM did little to boost the confidence of
CORBA customers, who were still stuck with their
complex technology. ”

Michi Henning : The Rise and Fall of CORBA, 2006

Design Goals

Objects and methods can
be transparently invoked
over networks

Middleware simplifies
development of
distributed applications

Middleware provides Fail-
Over, Robustness,
Scalability, ...

“Designing complex
applications with simple
programmers fallacy

Principles

IDL describes the operations
provided by the object both
locally and on the server

Client invokes operations on local

Proxy
ORB transmits the request to — Object
. . Implemerntation
server location and invokes the |
operation on remote object I% DL
St Skelpton

Servant handles the request on]
the server side | Peest [

. . Otject Request Broker
ORB manages servant invocation, . —
lifecycle, load-balancing T e g,
ORB then transmits the response oo O Mo e

back to the client

CORBA Services

Proxy: Location, Platform and Language transparency
— Request and Response routing

— Parameter handling

— Reference management

Wrapper Facade: Resource allocation transparency
— Object-Servant Mapping

— Load Balancing and Fail-Over
Service/Object/Resource Location

— Naming service (object registration)

— Trading service (service/capability registration)
Dynamic Invocation (Not discussed)

Services - detailed

Object life cycle: Defines how CORBA objects are created, removed,
moved, and copied

Naming: Defines how CORBA objects can have friendly symbolic names

Events: Decouples the communication between distributed objects
Relationships: Provides arbitrary typed n-ary relationships between
CORBA objects

Externalization: Coordinates the transformation of CORBA objects to and
from external media

Transactions: Coordinates atomic access to CORBA objects

Concurrency Control: Provides a locking service for CORBA objects in
order to ensure serializable access

Property: Supports the association of name-value pairs with CORBA
objects

Trader: Supports the finding of CORBA objects based on properties
describing the service offered by the object

Query: Supports queries on objects

Overview

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY
in args ...

""""" operation() OBJECT
REF | out args + return value (SERVANT)
-

1
o)

(

GIOP/TIOP

C) STANDARD INTERFACE Q STANDARD LANGUAGE MAPPING

. ORB-SPECIFIC INTERFACE C)STANDARD PROTOCOL

D. Schmidt (with two next slides as well)

Terminology

Object -- This is a CORBA programming entity that consists of an identity, an interface, and
an implementation, which is known as a Servant.

Servant -- This is an implementation programming language entity that defines the operations that
support a CORBA IDL interface. Servants can be written in a variety of languages, including C, C++,
Java, Smalltalk, and Ada.

Client -- This is the program entity that invokes an operation on an object implementation.
Accessing the services of a remote object should be transparent to the caller. Ideally, it should be
as simple as calling a method on an object, i.e., obj->op(args). The remaining components in Figure
2 help to support this level of transparency.

Object Request Broker (ORB) -- The ORB provides a mechanism for transparently communicating
client requests to target object implementations. The ORB simplifies distributed programming by
decoupling the client from the details of the method invocations. This makes client requests appear
to be local procedure calls. When a client invokes an operation, the ORB is responsible for finding
the object implementation, transparently activating it if necessary, delivering the request to the
object, and returning any response to the caller.

ORB Interface -- An ORB is a logical entity that may be implemented in various ways (such as one or
more processes or a set of libraries). To decouple applications from implementation details, the
CORBA specification defines an abstract interface for an ORB. This interface provides various helper
functions such as converting object references to strings and vice versa, and creating argument lists
for requests made through the dynamic invocation interface described below.

Terminology (2)

CORBA IDL stubs and skeletons -- CORBA IDL stubs and skeletons serve as the “'glue" between the
client and server applications, respectively, and the ORB. The transformation between CORBA IDL
definitions and the target programming language is automated by a CORBA IDL compiler. The use
of a compiler reduces the potential for inconsistencies between client stubs and server skeletons
and increases opportunities for automated compiler optimizations.

Dynamic Invocation Interface (DIl) -- This interface allows a client to directly access the underlying
request mechanisms provided by an ORB. Applications use the DIl to dynamically issue requests to
objects without requiring IDL interface-specific stubs to be linked in. Unlike IDL stubs (which only
allow RPC-style requests), the DIl also allows clients to make non-blocking deferred

synchronous (separate send and receive operations) and oneway (send-only) calls.

Dynamic Skeleton Interface (DSI) -- This is the server side's analogue to the client side's DII. The
DSl allows an ORB to deliver requests to an object implementation that does not have compile-
time knowledge of the type of the object it is implementing. The client making the request has no
i(li<e:|:1 whether the implementation is using the type-specific IDL skeletons or is using the dynamic
skeletons.

Object Adapter -- This assists the ORB with delivering requests to the object and with activating the
object. More importantly, an object adapter associates object implementations with the ORB.
Object adapters can be specialized to provide support for certain object implementation styles
(such as OODB object adapters for persistence and library object adapters for non-remote objects).

IDL: Interface Definition Language

Platform and language independent

Specifies only the business level services performed by
an object

Used to generate wrappers and implementation code
stubs

Object-oriented and structured

— Modules

— Objects

— Methods

— Exceptions

— Primitive types

IDL example

module StockObjects {

struct Quote {
string symbol;
long at_time;
double price;
long volume;
X
exception Unknown({};
interface Stock {
/I Returns the current stock quote.
Quote get_quote() raises(Unknown);
/I Sets the current stock quote.
void set_quote(in Quote stock_quote);
Il Provides the stock description,
readonly attribute string description;
X
interface StockFactory {
Stock create_stock(in string symbol, in string description);
%

IDL-Java Mapping

IDL Java

* Module * Package

* Interface * Interface

* Operation * Method

e Attribute * Pair of methods (property)

* Exception * Exception

Operations on IDL Objects

Inheritance
Interface Martin: Mother{...};
Multiple Inheritance
Interface Martin: Mother, Father {...};
All CORBA objects inherit from Object
narrow: cast to a more specific type
org.omg.CORBA.Object obj = ...
Stock theStock = StockHelper.narrow(obj);
is_a: type-checking (interface)
if (obj.is_a(StockHelper.id())) ...
id(): Interface id valid in a repository
IDL:StockObjects/Stock:1.0

Object Reference

Conceptually a mix of URL and pointer features

IOR format — opaque for developer

URI format

— Reference is locally matched with one or more IDL-defined
interfaces

— Operations on the interfaces are invoked on reference

— Synchronous invocation of operations
— Operations are invoked on local stub

CORBA location:

— corbaloc::160.45.110.41:38693/StandardNS/NameServer-
POA/ root

lIOP Protocol

Ensures binary compatibility
between ORB instances

Used by other frameworks
— RMI

— EJB

— JADE

— Distributed control
Binary coding
Language-specific mappings

Writing an Application

Define the IDL files
Generate client and server stubs and skeletons

Implement server objects

— ldeally independently of generated code
* (Because you will re-generate it again and again...)

Implement/select Object Adapters
— Basic object adapters and portable object adapters
Implement client-side code
Build
Start the server and client
Based on Java/CORBA Tutorial

— http://java.sun.com/developer/onlineTraining/corba/corba.html#c2

IDL example

module StockObjects {

struct Quote {
string symbol;
long at_time;
double price;
long volume;
X
exception Unknown({};
interface Stock {
/I Returns the current stock quote.
Quote get_quote() raises(Unknown);
/I Sets the current stock quote.
void set_quote(in Quote stock_quote);
Il Provides the stock description,
readonly attribute string description;
X
interface StockFactory {
Stock create_stock(in string symbol, in string description);
%

Skeleton for server object implementation

public class Stockimpl extends StockObjects. StockimplBase {
private Quote _quote=null;
private String _description=null;
public Stocklmpl(String name, String description) {

super();
_description = description;
}

public Quote get_quote() throws Unknown {
if (_quote==null)
throw new Unknown();
return _quote;

}

public void set_quote(Quote quote) { quote = quote; }
public String description() { return _description; }

Server (simplified !)

public class theServer {
public static void main(String[] args) {

try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Create a stock object.
Stockimpl theStock = new Stocklmpl("GIl", "Global Industries Inc.");
// Let the ORB know about the object
orb.connect(theStock);
PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(args[0])));
out.printin(orb.object_to_string(theStock));
out.close();
// wait for invocations from clients
java.lang.Object sync = new java.lang.Object();
synchronized (sync) { sync.wait(); }

}

catch (Exception e) {
System.err.printin("Stock server error: " + e);
e.printStackTrace(System.out);

Patterns: Server Side (CCM)

Service

— Stateless, used once, very efficient, single method invocation,
temporary object reference

Session

— Lasts several calls from the same client. Temporary reference,
not registered. (example: Iterators). No persistent storage.

Process

— Persistent object reference, registration with naming or trading
service. Medium-term process, typically maps to business
process.

Entity

— Like fully-fledged Entity bean from EJB 2.0. Primary function is
persistent entity representation and database mapping.

Discussion: Standardization process

Vendor Centric process
Market forces

Inconsistent vendor implementations/lack of reference
implementation

Complexity

— “For example, CORBA’s object adapter requires more than 200 lines of
interface definitions, even though the same functionality can be
provided in about 30 lines—the other 170 lines contribute nothing to
functionality, but severely complicate program interactions with the
CORBA runtime.”

Lack of Maturity (Security, Versioning, late specifications)
Language independence/type inflexibility

Michi Henning: The Rise and Fall of CORBA, ACM Queue, June 2006
- hnnl/g eue.acm QI:EZdEI.a’ cfm?'d:]]é 2044

