
Architecture of Software Systems – Lecture 4

Design Patterns for Distributed Systems

Martin Rehák

Overview

• Selected Design & Architectural patterns for
Distributed/Multiplatform computing

• Content based on:
– Douglas C. Schmidt, Pattern Oriented Software

Engineering
– Gang of Four: Gamma, Helm, Johnson, Vlissides;

Design Patterns: Elements of Reusable Object-
Oriented Software

– Guerraoui/Rodrigues: Introduction to Reliable
Distributed Programming

– …

Paradigm Shift

• From local to distributed

• Explicit vs. implicit

• Latency

• Failures

– Safety: a property is a safety property if it can never
be restored once it is broken (e.g. the link will never
insert a non-existing message into the media)

– Liveliness: can be restored anytime in the future (e.g.
subsystem will answer the request)

Distribution Issues

1. Remote resource localization

2. Remote resource creation and usage

3. State synchronization management

4. Failure detection

5. Failure management, recovery and failover

6. Resource destruction

Facade

• Façade pattern hides the
complexity and
heterogeneity of system,
subsystem or library
behind a simple interface

• Typically replaces/hides
more than one object
– Simplifies client access

– Allows transparent
resource management

– Allows transparent lazy
initialization

Facade vs. Interface

• Interface (in Java sense) is far more restricted
than Façade

• Only defines a contract between the
library/implementing class and its user –
programmer

• Façade pattern allows active handling of more
complex issues than actual business logic
– Most of the code in distributed applications is

NOT directly related to business logic

(Wrapper) Façade Example: JDBC

• Java Database Connectivity provides a unified
API for most database work in Java

• Unified methods and constants

• Uses the Adapter pattern to incorporate third-
party DBMS drivers

• Successfully hides most of the connection
complexity/decisions from the Application
Developer

Adapter/Wrapper

• The Adapter pattern provides mapping
between two (isofunctional) interfaces

• Ensures syntactic and semantic compatibility
of calls

Wrapper Façade

• The Wrapper Facade
design pattern
encapsulates the
functions and data
provided by existing non-
object-oriented APIs
within more concise,
robust, portable,
maintainable, and
cohesive object-oriented
class interfaces

Douglas C. Schmidt, C++ Report 1999

• Usages:
• Java Swing
• ACE/ORB
• Platform independent

threading/synchronization libraries
• ACE Library

Proxy

• Proxy pattern is a local
representation of a
remote object, interface
or library

• Rarely used alone,
frequently combined
with Façade, Wrappers
and other Patterns

The Proxy Pattern (Douglas Schmidt, POSA)

1 1
Proxy

service

Service

service

AbstractService

service

Client

Proxy example – Symbian (1)

Ericsson. http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern

http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern
http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern

Proxy Example – Symbian (2)

Proxy Example – Symbian (3)

Proxy Example – Symbian (4)

Implicit vs. Explicit Distribution

Implicit vs. Explicit Distribution

Stateful vs. Stateless design

• State consistency and resource management are
the points where most abstractions break in real
life:
– CORBA

– COM/DCOM/OLE

• Alternative approaches make the distribution
EXPLICIT and incorporate it into the design from
the beginning
– Messaging

– HTTP-based communication

Active Object

• The Active Object design
pattern decouples method
execution from method
invocation to enhance
concurrency and simplify
synchronized access to
objects that reside in their
own threads of control.

D. Schmidt, et al. 2007

• Agents/Multi-Agent
Systems and OLTP systems
are most frequently based
on Active Objects
(Messaging)

Active Object

Reactor
• The Reactor architectural pattern allows event-driven

applications to demultiplex and dispatch service requests
that are delivered to an application from one or more clients.

(Schmidt)

Handle
owns

dispatches

*

notifies *

*

handle set

 Reactor

handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

Concrete Event Handler A

handle_event ()
get_handle()

Concrete Event Handler B

handle_event ()
get_handle()

Synchronous
Event Demuxer

select ()

<<uses>>

Proactor

• The Proactor architectural pattern allows event-driven
applications to efficiently demultiplex and dispatch service
requests triggered by the completion of asynchronous operations,
to achieve the performance benefits of concurrency without
incurring certain of its liabilities. (Schmidt)

Handle

<<executes>>

*

<<uses>>

is associated with

<<enqueues>>

<<dequeues>>

<<uses>> <<uses>>
Initiator

<<demultiplexes
& dispatches>>

<<invokes>>

Event Queue
Completion

Asynchronous
Operation Processor

 execute_async_op()

Asynchronous
Operation

async_op()

Asynchronous
Event Demuxer

get_completion_event()

Proactor

handle_events()

Completion
Handler

 handle_event()

Concrete
Completion

Handler

Reactor/Proactor – Web server

• Concurrency – The server must
perform multiple client requests
simultaneously;

• Efficiency – The server must
minimize latency, maximize
throughput, and avoid utilizing
the CPU(s) unnecessarily.

• Programming simplicity – The
design of the server should
simplify the use of efficient
concurrency strategies;

• Adaptability – Integrating new or
improved transport protocols
(such as HTTP 1.1 [3]) should
incur minimal maintenance costs.

Schmidt, 1997 (NOT a Proactor/Reactor)

Reactor

Reactor – Connection

1. The Web Server registers an Acceptor with
the Initiation Dispatcher to accept new
connections;

2. The Web Server invokes event loop of the
Initiation Dispatcher;

3. A client connects to the Web Server;
4. The Acceptor is notified by the Initiation
5. Dispatcher of the new connection request

and the Acceptor accepts the new
connection;

6. The Acceptor creates an HTTP Handler to
service the new client;

7. HTTP Handler registers the connection with
the Initiation Dispatcher for reading client
request data (that is, when the connection
becomes “ready for reading”);

8. The HTTP Handler services the request from
the new client.

Reactor – Request Processing

1. The client sends an HTTP GET request;
2. The Initiation Dispatcher notifies the HTTP

Handler when client request data arrives at the
server;

3. The request is read in a non-blocking manner
such that the read operation returns
EWOULDBLOCK if the operation would cause the
calling thread to block (steps 2 and 3 repeat until
the request has been completely read);

4. The HTTP Handler parses the HTTP request;
5. The requested file is synchronously read from the

file system;
6. The HTTP Handler registers the connection with

the Initiation Dispatcher for sending file data
(that is, when the connection becomes “ready for
writing”);

7. The Initiation Dispatcher notifies the HTTP
Handler when the TCP connection is ready for
writing;

8. The HTTP Handler sends the requested file to the
client in a non-blocking manner such that the
write operation returns EWOULDBLOCK if the
operation would cause the calling thread to block
(steps 7 and 8 will repeat until the data has been
delivered completely).

Proactor

Proactor - Connection
1. The Web Server instructs the Acceptor to initiate

an asynchronous accept;

2. The Acceptor initiates an asynchronous accept
with the OS and passes itself as a Completion
Handler and a reference to the Completion
Dispatcher that will be used to notify the
Acceptor upon completion of the asynchronous
accept;

3. The Web Server invokes the event loop of the
Completion Dispatcher;

4. The client connects to the Web Server;

5. When the asynchronous accept operation
completes, the Operating System notifies the
Completion Dispatcher;

6. The Completion Dispatcher notifies the Acceptor;

7. The Acceptor creates an HTTP Handler;

8. The HTTP Handler initiates an asynchronous
operation to read the request data from the
client and passes itself as a Completion Handler
and a reference to the Completion Dispatcher
that will be used to notify the HTTP Handler
upon completion of the asynchronous read.

Proactor - Processing
1. The client sends an HTTP GET request;

2. The read operation completes and the Operating
System notifies the Completion Dispatcher;

3. The Completion Dispatcher notifies the HTTP
Handler (steps 2 and 3 will repeat until the entire
request has been received);

4. The HTTP Handler parses the request;

5. The HTTP Handler synchronously reads the
requested file;

6. The HTTP Handler initiates an asynchronous
operation to write the file data to the client
connection and passes itself as a Completion
Handler and a reference to the Completion
Dispatcher that will be used to notify the HTTP
Handler upon completion of the asynchronous
write;

7. When the write operation completes, the
Operating System notifies the Completion
Dispatcher;

8. The Completion Dispatcher then notifies the
Completion Handler (steps 6-8 continue until the
file has been delivered completely).

Reactor vs. Proactor

Processing connections in web server. Reactor (left) vs. Proactor (right)

Proactor (Details)

Result

Completion
Handler

Completion

: Asynchronous

Operation

: Proactor Completion

Handler

exec_async_

handle_

Result

service()

: Asynchronous

Operation

Processor

: Initiator

async_operation()

Result

handle_events()

event

event

Ev. Queue

operation ()

: Completion

Event Queue

Result

event()

1. Initiate
operation

2. Process
operation

3. Run event
loop

4. Generate &
queue
completion
event

5. Dequeue
completion
event &
perform
completion
processing

HalfSync/Half Async

• The Half-Sync/Half-Async architectural pattern
decouples async & sync service processing in
concurrent systems, to simplify programming
without unduly reducing performance

<<get>>

<<get>>

<<get>>

<<put>>

<<ready to read>>

Synchronous
Service Layer

Asynchronous
Service Layer

Queueing
Layer

Worker Thread 1 Worker Thread 3

ACE_Reactor
Socket

Event Sources

Request Queue

HTTP Acceptor HTTP Handlers,

Worker Thread 2

HalfSync/Half Async

: External Event

Source

: Async Service : Queue

notification

read()

enqueue()

message

: Sync Service

work()

message

read()

message

work()

notification

Conclusion

1. Remote resource localization
1. Yellow pages, Singleton

2. Remote resource creation and usage
1. Factory, Façade, Reactor, Proactor, Half-Sync/Async

3. State synchronization management
1. Façade, Proxy, Active Object

4. Failure detection
5. Failure management, recovery and failover
6. Resource destruction

1. Proxy, Façade, Garbage collection, …

