
Informed Search

Czech Technical University in Prague, Faculty of Electrical Engineering

ZUI 2011, course 2

• State Space S - stavový prostor

• Initial state s0 – počáteční stav

• Successor function: ∀𝑠 ∈ 𝑆: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑠 → 𝑠1, 𝑠2, … , 𝑠𝑛

• Goal Test 𝑠 ∈ 𝑆: 𝑔𝑜𝑎𝑙 𝑠 → 𝑇 𝑜𝑟 𝐹

• Arc cost 𝑠 ∈ 𝑆: 𝑔 𝑠 → 𝑹

• Heuristic 𝑠 ∈ 𝑆: 𝑠 → 𝑹

Search Problems

• State Space S - stavový prostor

• Initial state s0 – počáteční stav

• Successor function: ∀𝑠 ∈ 𝑆: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑠 → 𝑠1, 𝑠2, … , 𝑠𝑛

• Goal Test 𝑠 ∈ 𝑆: 𝑔𝑜𝑎𝑙 𝑠 → 𝑇 𝑜𝑟 𝐹

• Arc cost 𝒔 ∈ 𝑺: 𝒈 𝒔 → 𝑹

• Heuristic 𝒔 ∈ 𝑺: 𝒉 𝒔 → 𝑹

Informed Search Problems

• Optimal – The algorithm returns best solution.

• Complete – if solution exists, the algorithm finds a solution. If
not, the algorithm reports that no solution exists.

• Sound – Complete and Optimal algorithm

• Admissible – Optimal

Note on algorithm properties

5

1. If GOAL?(initial-state) then return initial-state

2. INSERT(initial-node,FRINGE)

3. Repeat:

a. If empty(FRINGE) then return failure

b. N REMOVE(FRINGE)

c. s STATE(N)

d. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N

ii. If GOAL?(s’) then return path or goal state

iii. INSERT(N’,FRINGE)

General Search Algorithm Template

6

1. If GOAL?(initial-state) then return initial-state

2. INSERT(initial-node,FRINGE)

3. Repeat:

a. If empty(FRINGE) then return failure

b. N REMOVE(FRINGE)

c. s STATE(N)

d. If GOAL?(s) then return path or goal state

e. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N

ii. INSERT(N’,FRINGE)

Heuristic Search Algorithm Template

7

1. If GOAL?(initial-state) then return initial-state

2. INSERT(initial-node,FRINGE)

3. Repeat:

a. If empty(FRINGE) then return failure

b. N REMOVE(FRINGE)

c. s STATE(N)

d. If GOAL?(s) then return path or goal state

e. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N

ii. INSERT(N’,FRINGE)

General Search Algorithm Template

Goal test

• Idea: Avoid extending paths that seem to be expensive

• Best-First search

• Evaluation function f(n) for each state/node

 𝑓 𝑛 = +

• g(n): cost to reach the node n

• h(n): estimated cost to get from node n to goal

A* Search

COST HEURISTIC

9

1. If GOAL?(initial-state) then return initial-state

2. INSERT(initial-node,FRINGE)

3. Repeat:

a. If empty(FRINGE) then return failure

b. N REMOVE(FRINGE)

c. s STATE(N)

d. If GOAL?(s’) then return path or goal state

e. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N

ii. INSERT(N’,FRINGE)

A* continued

10

1. If GOAL?(initial-state) then return initial-state

2. INSERT(initial-node,FRINGE)

3. Repeat:

a. If empty(FRINGE) then return failure

b. N REMOVE(FRINGE)

c. s STATE(N)

d. If GOAL?(s’) then return path or goal state

e. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N

ii. INSERT(N’,FRINGE)

A* continued

• We know the cost to the node g(n) – nothing to tune here

• We don’t know the exact cost from n to goal h(n) – if we knew,
no need to search – estimate it!

• H(N) – admissible and consistent heuristic

• Admissible = optimistic – it never overestimates the cost to the
goal

• Consistent = Triangle inequality is valid

–𝑎 + 𝑏 ≥ 𝑐

–𝑔 𝑀 + 𝑀 ≥ (𝑁)

H(N) – Heuristic function

a c

b

N

M

• Complete, unless there are infinitely many nodes with
𝑓(𝑛) ≤ 𝑓(𝐺)

• Runtime complexity – exponential in [relative error in h]

• Space complexity – keeps all nodes in memory

• Optimal

• A* expands all nodes with 𝑓 𝑛 < 𝐶∗, 𝑔 𝐺 = 𝐶∗

• A* expands some nodes with 𝑓 𝑛 = 𝐶∗

• A* expands no nodes with 𝑓 𝑛 > 𝐶∗

Properties of A*

• Imagine a huge skyscraper with several elevators. As the input
you have:

• set of elevators, where for each you have:

• - range of the floors that this elevator is operating in

• - how many floors does this elevator skip (e.g. an elevator can
stop only on every second floor, or every fifth floor, etc.)

• - speed (time in seconds to go up/down one floor)

• - starting position (number of the floor)

Escaping the World Trade Center

• Let us assume, that transfer from one elevator to another one
takes the same time (given as input - t).

• You are starting in kth floor and you want to find the quickest
way to the ground floor.

• You can assume that you are alone in the building and elevators
do not run by themselves.

1. What are the states?

2. What is the initial state and the goal state?

3. What is the cost function?

4. What are possible heuristics?

Escaping the World Trade Center

