
Two-players Games

 two-players games

 zero-sum games

 no chance nodes

 perfect information

 chess, checkers, ...

 note – the algorithms return a value, but we need a solution

 backup function

Reminder and

 function alphabeta(node, depth, α, β, Player)
 if (depth = 0 or node is a terminal node) return the heuristic value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, alphabeta(child, depth-1, α, β, not(Player)))

 if (β≤α) break

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player)))

 if (β≤α) break

 return β

Reminder (2)

 function negamax(node, depth, α, β, color)
 if (depth = 0 or node is a terminal node) return the heuristic value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, -negamax(child, depth-1, -β, -α, -color))

 if (β≤α) break

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player)))

 if (β≤α) break

 return β

Step 1 - Negamax

 *α, β+ interval – window

 alphabeta initialization [-∞, +∞+

 what if we use *α0, β0]

 x = alphabeta(node, depth, α0, β0,player)

 α0 ≤ x ≤ β0 - we found a solution

 x ≤ α0 - failing low (run again with [-∞, x+)

 x ≥ β0 - failing high (run again with *x, +∞+)

Step 2 – Aspiration Search

 assume we are in a MAX node

 we are about to search a child 'c'

 we already have obtained a lower bound 'α'

 Is it worth searching the branch 'c'?

 we need to have some test ...

Step 3 – Scout – Idea

 what we really need at that moment is a bound (not the
precise value)

 Remember Aspiration Search?

 x ≤ α0 - failing low (we know, that solution is ≤ x)

 x ≥ β0 - failing high (we know, that solution is ≥ x)

 What if we use a null-window *α, α+1+ (or *α,α])?

 we obtain a bound …

Step 3 – Scout – A Test

function negascout(node, depth, α, β, color)

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := -negascout(child, depth-1, -b, -α, -color))

 if ((α < v < β) and (child is not the first child))

 v := -negascout(child, depth-1, -β, -α, -color))

 α := max(α, v)

 if (β≤α) break

 b := α + 1

 return α

Step 3 – NegaScout

 also termed Principal Variation Search (PVS)

 dominates alphabeta (never evaluates more nodes than
alphabeta)

 depends on the move ordering

 can benefit from transposition tables

 generally 10-20% faster compared to alpha-beta

Step 3 – NegaScout

 Memory-enhanced Test Driver

 Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial Intelligence,
Volume 87, Issues 1-2, November 1996, Pages 255-293

Step 4 – MTD

Other Games - Chance nodes

Other Games – Imperfect Information

 checkers – 1994 Chinook ... now a solved game (the program
cannot loose)

 chess – 1997 Deep Blue, …, computers are now too strong

 go – best human players are still undefeated, but … (see
http://www.computer-go.info/h-c/index.html)

 poker – 2008 best program (Polaris) can beat a human master

 … and many, many others (Hex, Havannah, ...)

 University of Alberta

 Computer Olympiad

Games and AI

http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html

 simultaneous moves, imperfect information

 durative moves (asynchronous chess, Google AI Challenge, ...)

 General Game Playing

 an algorithm receives rules of the game and has to play

 ARIMAA (created in 2002)

 BF ≈ 17,000; no opening books; very few patterns

 easy for people, very difficult for an algorithm

 using a 'real-AI-algorithms' in computer video-games

 very few examples: F.E.A.R., World In Conflict, ...

Challenges?

