Common knowledge

(and possible worlds semantics)

Common knowledge

$$E_{G}^{1}A \iff \bigotimes_{i \in G} K_{i}A$$

$$E_{G}^{k+1}A \iff E_{G}E_{G}^{k}A$$

$$C_{G}A \iff \bigotimes_{k>0} E_{G}^{k}A$$

Let M be any K. structure. There holds:

- $M \models C_G \alpha \rightarrow E_G (\alpha \& C_G \alpha)$
- If $M \models \varphi \to E_G (\psi \& \varphi)$, then $M \models \varphi \to C_G \psi$ (Induction Rule)

Following formulas are valid:

- (i) $(C_G A \land C_G (A \to B)) \to C_G B$
- (*ii*) $C_G A \rightarrow A$
- $(iii) \quad C_G A \to C_G C_G A$
- $(iv) \neg C_G A \to C_G \neg C_G A$

The assumptions about the relations K_i are the same as in case of knowledge of individual agents.

Anna a Bob

Ann and **B**ob take part in a quizz. First, the organizer selects from an urn a natural number n, that he writes on the forehead of one of the players and continues by writing the neighboring number (either n+1 or n-1) on the forhead of the second player. Neither Ann nor **B**ob knows her/his number – each sees only the other's forehead. They can take turns in announcing nothing but ,,*I do not know my number*." or ,,*I know my number*." Suppose A has on her forehead 3 and B has 4.

- Draw the corresponding Kripke structure.
- Do they have some common knowledge, e.g. that their numbers are smaller than 100?

Valid property

(Lemma on the slide 27 of Lecture Mol1)

It can be proven for any Kripke structure M, its state s, a formula φ , group of agents G and k>0 that

- $(\mathbf{M}, \mathbf{s}) \mid = \mathbf{E}_{\mathbf{G}}^{k} \boldsymbol{\varphi}$ iff $(\mathbf{M}, \mathbf{v}) \mid = \boldsymbol{\varphi}$ for any state \mathbf{v} , that is \mathbf{G} reachable from the state \mathbf{s} in \mathbf{k} steps.
- $(\mathbf{M}, \mathbf{s}) \mid = \mathbf{C}_{\mathbf{G}} \boldsymbol{\varphi}$ iff $(\mathbf{M}, \mathbf{v}) \mid = \boldsymbol{\varphi}$ for any state \mathbf{v} , that is \mathbf{G} reachable fro, the state \mathbf{s} .

Consequently, Ann and Bob cannot have a common knowledge on the upper bound of their numbers (the corresponding Kripke structure must contain numbers of arbitrarily high values).

Is there a difference between common knowledge and a fact everyone knows?

Mr. Product and Mr.Sum

The organizer of a quizz selected from an urn 2 natural numbers **x** and **y** from the domain {2,3,4, ...,14}. He did not inform anyone about these numbers but he provided a hint to Mr. **S** by saying him the value of their sum, ie. **x**+**y** and a different hint to Mr.**P** who obtained info about their product, ie. **x*****y**.

Both men **P** and **S** started to reason:

- 1. Mr. **P** said "I do not know the conisdered numbers **x**, **y**."
- 2. Mr. S answered "I knew, you do not know."
- 3. Mr. **P** continued "Now, I know both numbers"
- Verify that selection of numbers 5 and 6 would result in this dialog.
- Suggest the next sentence of Mr.S.

Provide your solutions via the upload system by 18.5. 9:00 am!

V7 2009