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LECTURE PLAN
¢ The problem of classifier design.
¢ Learning in pattern recognition.
¢ Linear classifiers.
¢ Perceptron algorithms.
¢ Optimal separating plane with the Kozinec algorithm.
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Classifier Design (1)
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The object of interest is characterised by observable properties x € X and its class
membership (unobservable, hidden state) k € K, where X is the space of observations
and K the set of hidden states.

The objective of classifier design is to find a strategy ¢*: X — K that has some optimal
properties.

Bayesian decision theory solves the problem of minimisation of risk

R(q) =Y Wi(q(x),k) p(x,k)

given the following quantities:

® p(x,k),Vx € X,k € K — the statistical model of the dependence of the observable
properties (measurements) on class membership

® W(q(x), k) the loss of decision g(x) if the true class is k
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Classifier Design (2)
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Non-Bayesian decision theory solves the problem if p(z|k),Vx € X,k € K are known,
but p(k) are unknown (or do not exist). Constraints or preferences for different errors
depend on the problem formulation.

However, in applications typically:

® none of the probabilities are known. The designer is only given a training multiset
T ={(x1,k1)...(xp,kL)}, where L is the length (size) of the training multiset.

@ the desired properties of the classifier g(x) are known
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Classifier Design via Parameter Estimation C
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¢ Assume p(x, k) have a particular form, e.g. Gaussian (mixture), piece-wise constant,
etc., with a finite (i.e. small) number of parameters ©.

¢ Estimate the parameters from the using training set T°

¢ Solve the classifier design problem (e.g. risk minimisation), substituting the estimated
p(x, k) for the true (and unknown) probabilities p(x, k)

? : What estimation principle should be used?

. There is no direct relationship between known properties of estimated p(x, k) and the
properties (typically the risk) of the obtained classifier ¢'(x)

. If the true p(x, k) is not of the assumed form, ¢'(x) may be arbitrarily bad, even if the
size of training set L approaches infinity!

+ : Implementation is often straightforward, especially if parameters ©. for each class are
assumed independent.

+ : Performance on test data can be predicted by crossvalidation.


http://cmp.felk.cvut.cz

& o
Learning in Statistical Pattern Recognition C
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¢ Choose a class @ of decision functions (classifiers) ¢ : X — K.

¢ Find ¢* € (Q minimising some criterion function on the training set that approximates
the risk R(q) (true risk is uknown).

¢ Objective functions:

Empirical risk (training set error) minimization. True risk approximated by

Remp(46(2) = 7 3 W(go(i), i)

O©* = argmin Repp(ge(x))
©

Examples: Perceptron, Neural nets (Back-propagation), etc.

Structural risk minimization.
Example: SVM (Support Vector Machines).
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Overfitting and Underfitting @ 2
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¢ How rich class @ of classifiers go(x) should be used?

® The problem of generalization is a key problem of pattern recognition: a small empirical
risk Remp need not imply a small true expected risk R!

underfit fit overfit

As discussed previously, a suitable model can be selected e.g. using cross-validation.


http://cmp.felk.cvut.cz

Structural Risk Minimization Principle (1)

We would like to minimise the risk

but p(x, k) is unknown.

Vapnik and Chervonenkis proved a remarkable inequality

1
R(q) < Remp(Q) + Rgir <h7 Z) )

where h is VC dimension (capacity) of the class of strategies Q).

Notes:
+ R4 does not depend on the unknown p(x, k)

+ Ry known for some classes of (), e.g. linear classifiers.

7/46
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Structural Risk Minimization Principle (2) @
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® There are more types of upper bounds on R.
E.g. for linear discriminant functions

VC dimension (capacity)

2

m

¢ Examples of learning algorithms: SVM or e-Kozinec.

(w*, b*) = argmax min
w,b

min , in

. wW--x + wo . W -T + W
rex;  |w| r€Xs  |w| '
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Empirical Risk Minimisation, Notes
0/46

Is then empirical risk minimisation = minimisation of training set error, e.g. neural networks
with backpropagation, useless? No, because:

— R4 may be so large that the upper bound is useless.

+ Vapnik's theory justifies using empirical risk minimisation on classes of functions with VC
dimension.

+ Vapnik suggests learning with progressively more complex classes ().

+ Empirical risk minimisation is computationally hard (impossible for large L). Most classes
of decision functions ) where empirical risk minimisation (at least local) can be
effeciently organised are often useful.
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Linear Classifiers

10/46

For some statistical models, the Bayesian or non-Bayesian strategy is implemented by a
linear discriminant function.

Capacity (VC dimension) of linear strategies in an n-dimensional space is n + 2. Thus,
the learning task is well-posed, i.e., strategy tuned on a finite training multiset does not
differ much from correct strategy found for a statistical model.

There are efficient learning algorithms for linear classifiers.

Some non-linear discriminant functions can be implemented as linear after the feature
space transformation.
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Linear Discriminant Function

11/46

¢ fi(r) =wg -+ wo

¢ A strategy k* = argmax fi(x) divides X into |K| convex regions.
k
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Linear Separability (Two Classes) C
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Consider a dataset 7 = {(wl,kl), (xg,kg), ey (ZCL,]{‘N)}, with x; € R and k; € {—1, 1}
(i=1,2,.. L)

The data are linearly separable if there exists a hyperplane which divides R” to two
half-spaces such that the data of a given class are all in one half-space.

Formally, the data are linearly separable if

)

Jw € RPT1: sign (w[ 1 ]) —k;, Vi=1,2,...,L. (1)

Example of linearly separable data is on the next slide.
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Dichotomy, Two Classes Only @
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| K| = 2, i.e. two hidden states (typically also classes)

k=1, if w-xz+wyg>0,

q(r) = (2)

k=—-1, if w-x+wy<O.
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Perceptron Classifier C
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Input: T ={(x1,k1)...(xp, k) }, ke {—1,1}
Goal: Find a weight vector w and offset wg such that :
w-x;+wy>0 if kj=1, (V5 €{1,2,...,L})
(3)
w-x;+wo <0 if kj=-1
Equivalently, (as in the logistic regression lecture), with x’ = [ i ] and w’ = [ ?UO ]:
w' -zl >0 if k=1 (V5 €{1,2,...,L}),
(4)

: " Lol
or, with =7 = k;x7,

weal >0,  (Vje{l,2,..,L}.) (5)
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Perceptron Classifier, Formulation, Example @

f(@) =wy +w; 2=0.5+2.0z

<f(x) <0, classified as -1

T

| f(—0.25) =0

. [fz) >0, classified as 1>

—2 ~1

f'(x) :,(wn Wy )

0 1 2

-(1,2) =(0.5,2.0) -(1,7)

T

T

w=(0.5,2.0

f(x) <0, classified as -1

f(x) >0, classified as 1] |

=2 ~1

7[”(513) :(?Un Wy ) -

0 1 2

f(x) <0, classification error f(z) >0, correct classification

0 1 2

15/46

® class 1, ® class -1
Training set, z; € R

Augmenting by 1's, z/; € R?

Multiplying by k;, k;z7 € R
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Perceptron Learning: Algorithm
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: 1
We use the last representation (x7 = k; [ - ] w' = [ /LZ)O ]) and drop the dashes to
J

reduce notation clatter.

Goal: Find a weight vector w € RP™! (original feature space dimensionality is D) such that:

w-x; >0 (Vj € {1,2,...,L}) (6)

Perceptron algorithm, (Rosenblat 1962):
1. t=0 w® =0

2. Find a wrongly classified observation z;:

w2, <0, (je€{1,2,..,L}.)
3. If there is no misclassified observation then terminate. Otherwise,

w Y = 4 Tj -

4. Goto 2.
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Perceptron, Example 1

lteration 1. w =z,
w=(1.0,0.5) .

1 L1

0
-1t o2

=2 1 0 1 2
lteration 2. w=x, +x,

1l X

0 w 0.0,l.OL
-1 e’l2

© L

17/46

Consider this dataset with 2
points. As w(® = 0, all points
are misclassified.  Order the
points randomly and go over
this dataset. Find the first
misclassified point. It is z;.
Make the update of weight,
w ) + x7.

Note that x5 is misclassified.

w? «— w® + 25, Whole
dataset is correctly classified.
Done.
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Perceptron, Example 2, It. 1

€. =1.00 wy —wy +1, w, =1 1840
2| | 1
0000000000
0000000000
0000000000 ~
1 2006060088 | °
0000000000
0000000000 2298000000
0000000000 00000000
0 - 0000000000 -G666000000 | O -
0000000000 6400000000 |
0000000000 ' '
Q000000000 0 1
—1 0000000000 |
0000000000 “1
0000000000 i
| Updated weight
_ol : | wl) = w0 4 k; [ ! ]
l i
—2 —1 0 1 2
® class 1, ® class -1 1 update
Points marked with thick black border are misclassified ' :
1 processed point
(here all of them)

® a misclassified point z; to be used as the weight updater
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Perceptron, Example 2, It. 2 @

€, =0.15 Wy Wy _.1’ w, :(,) 19/46
I 2}
27 :
0000000000
0000000000
‘0000000000 ~ 1
i eeccsssess | -
XXX '
0000000000
0000 9000000000
0000000000
0 - 8ee0es 6000000000 O
=JLILICICI 0000000000 , |
0000000 0 1 2
_4 ooeeeee
00000000 1
00000000 Updated weight
T
update shown in cyan, w(?

in blue, w") in fading blue

2 updates }

Points marked with thick black border are misclassified

® a misclassified point x; to be used as the weight updater

® class 1, ® class -1
{2 processed points
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Perceptron, Example 2, It. 3

€, =0.05
ol |
0000000000
0000000000
0000000000
1 0000000000
0000000000
0000000000
O—~:::::::‘ L 0000000000
0000000000 2299999999
0000000000
0000000000
-1 eee0000000
0000000000
2| i
—2 1 0 1 2

® class 1, ® class -1

Points marked with thick black border are misclassified
® a misclassified point x; to be used as the weight updater

wnl<—wnl—1, Wy :|—1 20/46
2!
1
Ol . |
4
-1 (l) 1 2
Wy

Updated weight
WD = 0 4 f [ 1 ]

Lj
update shown in cyan, w®tD
in blue, w(*) in fading blue

{3|deates J

15 processed points
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Perceptron, Example 2, It. 4

0000000000
0000000000
000000000
1L 000000000

000000000
000000000

0000000000
Of - coc00000000

00000000
00000000
0000000 |

2 -1

® class 1, ® class -1

Points marked with thick black border are misclassified
® a misclassified point x; to be used as the weight updater

0 1 2

21/46

wy —w +1, wy =0

I
—
T

Updated weight
WD = 0 4 f [ 1 ]

L
update shown in cyan, w®tD
in blue, w(*) in fading blue

{4 updates J

19 processed points
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Perceptron, Example 2, It. 5 @

€, =0.01 . wp wy—1, wy ——1 [22/48
2 3
0000000000
0000000000
0000000000 .
1 0000000000 S
0000000000
ceceececel 0000000000 .
0000000000 9000000000 |
Ol . eccesecee 0000000000 _q |
eecccocccoe L 2%09000060 |
eecc0o00ee °000000006 -
0000000000 —
_1 oeeeeeecee 1 0 1 2 3
0000000000 w,
0000000000 .
| Updated weight
_2— : w(t_|_1) _ w(t) 4+ kj [ 1 ]
| z;
! update shown in cyan, w1

2 -1 0 1 2

® class 1, ® class -1 {

in blue, w® in fading blue

5 updates J

Points marked with thick black border are misclassified

. . . 114 In
® a misclassified point x; to be used as the weight updater processed points
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Perceptron, Example 2, It. 6 @

Eﬂ,. :IO.OS | | wq <_2IU() —|_|1, /CIU() :|O 23/46
Al
0000000000
000000000
000000000 .
1 8ecce00000 |
'©ecccce000
0000000000
0000000000 3099999999
eeccccccee 229999999 |
o ditsiigmIIIiiial | ) |
0000000000 0000000 L
0000000000 —
PETITITITITS 10 1 23
0000000000 W,
0000000000 |
| Updated weight
_o| l WD = ®) 4 [ 1 ]
: o
5 update shown in cyan, w®tD

2 -1 0 1 2

® class 1, ® class -1 {

in blue, w® in fading blue

6 updates ]

Points marked with thick black border are misclassified

® a misclassified point x; to be used as the weight updater B0 pregzssee] (el
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Perceptron, Example 2, It. 7 @
€ :IOOO | | | Iwﬂ I:O | 24/46

000000000
000000000
000000000
Of - cocc00000
0000000000

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
o0

0000000000
0000000000
1L 0000000000

0000000000
0000000000

10 1 2 3

Final weight

w = (0,2.76,0.33) '

-2 -1 0 1 2
® class 1, ® class -1
All data classified correctly.

7 updates
400 processed points
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Let the data be linearly separable and let there be
a unit vector u and a scalar v € R™ such that

wr; >y Vie{l,2,..,L}  (|lull =1) (7) D

Let the norm of the longest vector in the dataset
be D:

D = : 3
ma o] (5)

Then the perceptron algorithm will finish in a finite number of steps t*, with

? What if the data is not separable?

? How to terminate perceptron learning?
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Novikoff Theorem, Proof (1)

26/46
Let (Y) be the point which is incorrectly classified
at time ¢, so
w2 <. (10) A
Recall that the weight w*tD is computed using
this update z(*) as
WD = @ 4 (0 (1)
For the squared norm of w1, we have
w2 = D D = (@ 1 2O L (w® 4 ) (12)
= w®)? + 20 . 2 + |22 (13)
~\~ W—/
<0 < D?
< w2+ D* < Juw"V|?+2D? (14)
<Jw"?2P+3D* < ... < w9+ (t+1)D? (15)

lwD|? < (t41)D? (16)
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Novikoff Theorem, Proof (2)

We also have that

27/46

> 7
> ) u—|—7>w(t 1) U+ 2y D
(18)
> w2y 43y > (19)
> w® w4 (4 1)y (20)
w Yy >+ 1)y (21)

We take the two inequalities together, to obtain

(t 4+ 1)D2 > Hw(t—l—l)HQ > (w(t—l—l) . U)Z

1V
~
_|_
 —
o
2
\V}

Therefore,

(Jull = 1) (22)

(23)
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Perceptron Learning as an Optimisation Problem (1)

Perceptron algorithm, batch version, handling non-separability, another perspective:

Input: T'={x1,...21}
Output: a weight vector w minimising

Jw)=|{z e X :wh. z <0}

J(w) = Z 1

:EEX:w(t)-a:SO

or, equivalently

What would the most common optimisation method, i.e. gradient descent, perform?

w = w® — pVJ(w)

The gradient of J(w) is either 0 or undefined. Gradient minimisation cannot proceed.
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Perceptron Learning as an Optimisation Problem (2)

Let us redefine the cost function:

Jp(w) = Z (—w - )

rzeX:w-x<0

Vi) =02 = Y ()

reX:w-x<0

¢ The Perceptron Algorithm is a gradient descent method for J,(w) (gradient for a

single misclassified sample is —x, so the weight update is x)

29/46

Learning and empirical risk minimisation is just and instance of an optimization problem.

Either gradient minimisation (backpropagation in neural networks) or convex (quadratic)
minimisation (in mathematical literature called convex programming) is used.
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Perceptron Learning: @ 0
Non-Separable Case

30/46
Perceptron algorithm, batch version, handling non-separability:

Input: T'={z1,...21}
Output: a weight vector w*

1. w® =0, E=|T|=L, w*=0.
2. Find all mis-classified observations X~ = {z € X : w®) . 2 < 0}.
3. if | X7| < E then E = | X~ |;w* = w®

4. if te(w*,t,t,) then terminatate else w1 = w® + 9, S 2z
reX™

5. Goto 2.

¢ The algorithm converges with probability 1 to the optimal solution.
¢ Convergence rate not known.

¢ Termination condition tc(-) is a complex function of the quality of the best solution,
time since last update t — t;,, and requirements on the solution.
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Optimal Separating Plane and @ -

The Closest Point To The Convex Hull 31/46
The problem of optimal separation by a hyperplane
LW
(1) w* = argmaxmin — - x; (24)
w3 |w

can be converted to searching for the closest point to a convex hull (denoted by the overline)

r* = argmin |z|
reX

There holds that x* solves also the problem (23).

Recall that the classfier that maximises separation minimises the structural risk R,
(page 8)
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Convex Hull, llustration
32/46

min(ﬂ.xj)g m <|w|l,weX
i \|wl

lower bound upper bound
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The aim is to speed up the algorithm.

The allowed uncertainty ¢ is introduced.

lw| — min (ﬂ : ZL’j) <e
7 \|w]
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Training Algorithm 2 — Kozinec (1973) @
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- w® =z, i.e. any observation.
. A wrongly classified observation z; is sought, i.e., w(®) x5 <0, 7€ J.

. If there is no wrongly classified observation then the algorithm finishes otherwise

w = (1 — k) w® + k* x5,

k* = argmin ||(1 — &) w' + k]|
reER

. Goto 2.
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Kozinec and e-Solution

35/46
The second step of Kozinec algorithm is modified to:

A wrongly classified observation z; is sought for which
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Dimension Lifting

Consider the data on the right. They are
not linearly separable, because there is no
w € R? such that sign(wg + wiz) would
correctly classify the data.

Let us  artificially  enlarge  the
dimensionality of the feature space
by a mapping

d(z) : R — R%:

x
ceow = H| @)
After such mapping, the data become
linearly separable (the separator is shown
on the right).

© i

36,46

-1.0

3.0

2.5}
2.0}
1.5¢
1.0}
0.5}

0.0
-0.5

05 00 05 10 15 2.0

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

15 =10 -05 00 05 10 15 2.0

In general, lifting the feature space means adding D’ dimensions and replacing the original

feature vectors by

r <+ d(z), oé(x): R — RPHD" (26)
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Lifting, Example 1, It. 1

-2

1

® class 1, ® class -1

Points marked with thick black border are misclassified
® a misclassified point z; to be used as the weight updater

wy —wy +1, wy =1 37/46
S
o] S y
4 ;
. | .
-1 0 1
Wy

Updated weight
WD = 0 4 f [ 1 ]
L j

update shown in cyan, w(+D
in blue, w® in fading blue

[1 update }

1 processed point
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Lifting, Example 1, It. 2
€ =0.38

-2

1

® class 1, ® class -1

Points marked with thick black border are misclassified
® a misclassified point z; to be used as the weight updater

wy w1, wy =0
S
O —
1L E
. | .
-1 0 1
Wy

Updated weight
WD = 0 4 f [ 1 ]

Lj
update shown in cyan, w(+D
in blue, w® in fading blue

{2 updates }

3 processed points



http://cmp.felk.cvut.cz

_2_I

Lifting, Example 1,
€. =0.90

—2 1

® class 1, ® class -1

Points marked with thick black border are misclassified
® a misclassified point z; to be used as the weight updater

wy —wy +1, wy =1 39/46
S
0]
4 ;
. | .
-1 0 1
Wy

Updated weight
Wt = p® | . [

1
Lj

update shown in cyan, w(+D
in blue, w® in fading blue

{3 updates }

6 processed points
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Lifting, Example 1, It.

® class 1, ® class -1

Points marked with thick black border are misclassified
® a misclassified point z; to be used as the weight updater

wy —wy —1, wy =0 4073
r
0] PR
—1 E
. | .
-1 0 1
Wy

Updated weight
WD = 0 4 f [ 1 ]

Lj
update shown in cyan, w(+D
in blue, w® in fading blue

{4 updates }

13 processed points
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Lifting, Example 1, It. 5

41/46

1

Updated weight
WD = 0 4 f [ 1 ]

Lj

update shown in cyan, w®tD
in blue, w(*) in fading blue

5 updates ]

Points marked with thick black border are misclassified

® a misclassified point x; to be used as the weight updater

® class 1, ® class -1
{14 processed points
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Lifting, Example 1, It.
€, =0.44

42/46

Updated weight
WD) = ®) 4 [ 1 ]

L j
—2L . . . X update shown in cyan, w(+1)
-2 mil 0 1 2 in blue, w® in fading blue
® class 1, ® class -1 10 updates
Points marked with thick black border are misclassified {32 orocessed points}
® a misclassified point z; to be used as the weight updater
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Lifting, Example 1, It.

€, =0.25 43/46
2f |
| ®
(| |
| O
| °
0] AP o e
o
C | O
o | ()
1 O. | (0]
| Updated weight
| w! D = w® 4k [ azlj ]
b ' 5 ' ] update shown in cyan, w(+D
=2 -1 0 1 2 in blue, w® in fading blue
® class 1, ® class -1 15 updates
Points marked with thick black border are misclassified [44 Eocessed oints}
® a misclassified point z; to be used as the weight updater P P
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Lifting, Example 1, It. 30 C

44/46
. e, :;0.25 Jpcy <—Iwﬂ:—1, wy =2 24
i 3t I
: O 21
1— | .
| ® S Ob---- N -]
i o -1 I
0] o e | =2t :
@ -3t : i
() ! [ ' ' ' : ' : : '
® | ® -3-2-10 1 2 3 4
-1 00 ° | Wy
| Updated weight
| w! D = w® 4k [ azlj ]
—2t ' 5 ' ] update shown in cyan, w(+D
=2 1 0 1 2 in blue, w® in fading blue
® class 1, ® class -1
Points marked with thick black border are misclassified {gg uf:(?;:ssed oints}
® a misclassified point z; to be used as the weight updater P P
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Lifting, Example 1, It. 48 @
€,,.=0.00 45/46

—32-10 12 3 4 5

Wy

Final weight

w=(3,-1.53.12)"

® class 1, ® class -1
All data classified correctly.

48 updates
160 processed points
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Lifting, Example 1, Result
46/46

X

221 ] because of faster perceptron

Note that we have used the mapping = <+ [

. x
convergence (w.r.t. using just [ 2 ])

The final weight vector for the |
dimensionality-lifted dataset is '
w=(3,-15,3.12) .

15 =10 =05 00 05 10 15 20

The resulting discriminant function is: l
3| -

f(x)=3—15z+312(z* - 1) (27) | |

= —0.12— 1.5z + 3.1222. (28) 2 | |

| -

: —

15 1.0 -05 00 05 10 15 20
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