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Linear classifier

� Linear classification rule is h : Rn → {+1,−1} defined by

h(x;w, b) =
{

+1 if xTw + b > 0
−1 if xTw + b < 0

where a vector w ∈ Rn and a scalar b ∈ R are parameters.

� Linear classifier splits the input space Rn into three sub-spaces:

H+(w, b) = {x ∈ Rn | xTw + b > 0} positive decisions
H0(w, b) = {x ∈ Rn | xTw + b = 0} hyperplane of undecided inputs
H−(w, b) = {x ∈ Rn | xTw + b < 0} negative decisions
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Linearly separable examples

� Training examples

T = {(x1, y1), . . . , (xm, ym)} ∈ (Rn × {+1,−1})m

� Linearly separable training examples: There exist (w, b) ∈ Rn × R such that the
linear rule h(·;w, b) classifies all examples in T correctly, i.e., (w, b) is a solution of

xTi w + b > 0 , ∀i ∈ I+

xTi w + b < 0 , ∀i ∈ I−
}

which is the same as yi
(
xTi w + b) > 0 ,∀i ∈ I

where I = {1, . . . ,m}, I+ = {i ∈ I | yi = +1} and I− = {i ∈ I | yi = −1}.

� Separting hyperplane is any H0(w, b) = {x ∈ Rn | xTw + b = 0} such that (w, b) is
a solution of yi

(
xTi w + b) > 0 ,∀i ∈ I.

� Remark: Note that a given separating hyperplane has infinite number of
parametrizations: H0(w, b) = H0(λw, λb), ∀λ > 0.
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Finding a separating hyperplane

Task 1: Assume that the training examples T are linearly separable. The task is to find
any separating hyperplane.

� Task 1 requires to find (w, b) ∈ Rn × R such that

yi(xTi w + b) > 0 , ∀i ∈ I (1)

� Provided (w, b) ∈ Rn × R solves (1) then ∃ε > 0 such that

yi
(
xTi w + b

)
≥ ε ,∀i ∈ I ⇒ yi

(
xTi
w

ε
+
b

ε

)
≥ 1 ,∀i ∈ I

� Any separating hyperplane H0(w′, b′) can be parametrized by (w, b) which satisfies the
following set of non-strict linear inequalities

yi(xTi w + b) ≥ 1 , ∀i ∈ I (2)

� As a result, a separating hyperplane can be found by solving (2) which is an instance of
linear programming (with zero objective).
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Finding maximal margin hyperplane

Task 2: Assume that the training examples T are linearly separable. The task is to find
the maximal margin separating hyperplane, i.e. a separating hyperplane with the
maximal margin

m(w, b) = min
i∈I

yi
(xTi w + b)
‖w‖

� Note that the margin m(w, b) is given by a minimal signed distance over the training
examples T .

� The signed distance is

yi
(xTi w + b)
‖w‖

=
{

d(xi,w, b) if h(xi;w, b) = yi
−d(xi,w, b) if h(xi;w, b) 6= yi

where
d(x,w, b) = min{‖x− x′‖ | x′ ∈ H0(w, b)} =

|xTw + b|
‖w‖

is the Euclidean distance between x and its closest points on H0(w, b).
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Finding maximal margin hyperplane in canonical form

� The separating hyperplane H0(w, b) is in a canonical form if

min
i∈I

yi(xTi w + b) = 1

which implies that its margin is

m(w, b) = min
i∈I

yi
(xTi w + b)
‖w‖

=
1
‖w‖

� Finding the maximal margin separating hyperplane in a canonical form leads to solving

(w∗, b∗) = argmax
w∈Rn,b∈R

1
‖w‖

s.t. min
i∈I

yi(xTi w + b) = 1

= argmin
w∈Rn,b∈R

1
2
‖w‖2 s.t. min

i∈I
yi(xTi w + b) = 1

= argmin
w∈Rn,b∈R

1
2
‖w‖2 s.t. yi(xTi w + b) ≥ 1 ,∀i ∈ I
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Finding maximal margin hyperplane by
quadratic programming

� Finding the maximal margin hyperplane leads to solving a convex quadratic
programming task (PRIMAL-SVM-QP)

(w∗, b∗) = argmin
w∈Rn,b∈R

1
2
‖w‖2 s.t. yi(xTi w + b) ≥ 1 ,∀i ∈ I

� The resulting linear rule h(x;w∗, b∗) is called the maximal margin classifier.

� The PRIMAL-SVM-QP has n+ 1 variables and m constraints.

� The SVM classifiers are often used in applications when the dimension n is very large
and solving the primal PRIMAL-SVM-QP is not tractable.

� If n >> m, solving the PRIMAL-SVM-QP can be replaced by solving its Lagrange dual
problem which has m variables and m+ 1 constraints.
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Primal and dual form of the SVM learning problem

� Lagrange function of the PRIMAL-SVM-QP reads

L(w, b,α) =
1
2
‖w‖2 −

m∑
i=1

αi

[
yi
(
xTi w + b)− 1

)]

where α = (α1, . . . , αm)T ∈ Rm are the Lagrange multipliers.
� Primal problem, which is equivalent to PRIMAL-SVM-QP, is defined as

(w∗, b∗) = argmin
w∈Rn,b∈R

P (w, b)

where

P (w, b) = max
{
L(w, b,α) | α � 0

}
=
{
∞ if ∃i ∈ I, yi(xTi w + b) < 1
1
2‖w‖

2 if yi(xTi w + b) ≥ 1 ,∀i ∈ I

� Dual problem is defined as

α∗ = argmax
α�0

D(α) where D(α) = min
{
L(w, b,α) | w ∈ Rn , b ∈ R

}
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Useful results of the Lagrange duality

� Weak duality holds in general

P (w, b) ≥ P (w∗, b∗) ≥ D(α∗) ≥ D(α)

holds for all feasible (w, b) and α � 0.
� Strong duality applies for some problems including the PRIMAL-SVM-QP

P (w∗, b∗) = D(α∗)

� If the strong duality holds and α∗ is an optimal solution of the dual, then the primal
solution (w∗, b∗) is a minimizer of the unconstrained problem

(w∗, b∗) ∈ argmin
w∈Rn,b∈R

L(w, b,α∗)

� Assume that the strong duality holds and (w∗, b∗) is a primal and α∗ dual optimal
solution, then the complementary slackness holds

α∗i

[
yi
(
xTi w

∗ + b∗)− 1
)]

= 0 , ∀i ∈ I
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Derivation of the SVM dual problem

� By definition the dual objective is

D(α) = min
{
L(w, b,α) | w ∈ Rn , b ∈ R

}
where

L(w, b,α) =
1
2
‖w‖2 −

m∑
i=1

αi

[
yi
(
xTi w + b)− 1

)]
� For a fixed α, the w(α) minimizing L is obtained by

∂L(w, b,α)
∂w

= w −
∑
i=1

αiyixi = 0 ⇒ w(α) =
∑
i=1

αiyixi

thus
L(w(α), b,α) =

∑
i∈I

αi −
1
2

∑
i∈I

∑
j∈I

yiyjαiαjx
T
i xj − b

∑
i∈I

αiyi

� Minimizing L(w(α), b,α) w.r.t. b yields

D(α) =
{
αTe− 1

2α
THα if αTy = 0

−∞ otherwise

where e is vector of all ones, y = (y1, . . . , ym)T is a vector containing labels and H is a
symmetric positive semi-definite matrix with Hij = yiyjx

T
i x.
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The dual SVM problem

� The dual of the primal SVM problem is a convex Quadratic Program
(DUAL-SVM-QP)

α∗ = argmax
α∈Rm

[
αTe− 1

2
αTHα

]
s.t. yTα = 0 , α � 0

� The DUAL-SVM-QP has m variables and m+ 1 constraints of a simple form.
� Given solution the dual solution α∗, the primal solution vector w∗ can be obtained by

w∗ = argmin
w∈Rn

L(w, b,α∗) =
∑
i∈I

α∗i yixi

� The optimal b∗ can be determined from the complementary slackness (shown on the
next slide) or by selecting b∗ to satisfy the constraints

xTi w
∗ + b∗ ≥ 1 ,∀i ∈ I+ and xTi w

∗ + b∗ ≤ −1 ,∀i ∈ I−

so that
b∗ = −1

2

(
min
i∈I+

xTi w
∗ + max

i∈I−
xTi w

∗
)
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Complementary slackness

� The complementary slackness guarantee that

α∗i

[
yi
(
xTi w

∗ + b∗
)
− 1
]

= 0 , ∀i ∈ I

which implies

yi
(
xTi w

∗ + b∗
)

= 1 , for i ∈ ISV = {i ∈ I | α∗i > 0}

yi
(
xTi w

∗ + b∗
)
≥ 1 , for i ∈ I \ ISV

� The training examples {xi | i ∈ ISV }, called support vectors, have the shortest distance
(equal to 1

‖w∗‖) to the hyperplane H0(w∗, b∗).

� Removing the support vectors from the training set does not change the solution of the
PRIMAL-SVM-QP.

� The optimal b∗ can be computed by

b∗ = yi − xTi w∗ , ∀i ∈ ISV

or, for better numerical stability, using the average b∗ = 1
ISV

∑
i∈ISV

(
yi − xTi w∗

)
.
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Learning SVM classifier from non-separable examples

� Task 3: Given examples T = {(x1, y1), . . . , (xm, ym)} ∈ (Rn × {+1,−1})m, the goal
is to find parameters (w∗, b∗) of the linear SVM classifier by solving a convex QP task
(PRIMAL-C-SVM-QP)

(w∗, b∗, ξ∗) = argmin
w∈Rn,b∈R,ξ∈Rm

[
1
2
‖w‖2 + C

∑
i∈I

ξi

]

subject to
yi(xTi w + b) ≥ 1− ξi , ∀i ∈ I

ξi ≥ 0 , ∀i ∈ I

� ξ = (ξ1, . . . , ξm)T ∈ Rm are the slack variables relaxing the linear inequalities and
C > 0 is a prescribed constant.

� The sum of the slack variables upper bounds the number of training errors, i.e.∑
i∈I

ξi ≥
∑
i∈I

[[h(xi;w, b) 6= yi]]

� The PRIMAL-C-SVM-QP has m+ n+ 1 variables and 2m constraints. The
corresponding dual problem has m variables and 2m+ 1 constraints.
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Dual SVM problem for non-separable case

� Lagrange function of the PRIMAL-C-SVM-QP reads

L(w, b, ξ,α,µ) =
1
2
‖w‖2 + C

m∑
i=1

ξi −
m∑
i=1

αi

[
yi
(
xTi w + b)− 1 + ξi

)]
−
m∑
i=1

µiξi

where α ∈ Rm and µ ∈ Rm are the Lagrange multipliers.
� ∂L
∂w = w −

∑m
i=1 yiαixi = 0 ⇒ w =

∑m
i=1 yiαixi

� µi ≥ 0 and µi = C − αi ⇒
∑m
i=1 ξi(C − µi − αi) = 0

�
∑m
i=1αiyi = 0

� The dual objective D(α) = minw∈Rn,b∈R,ξ∈Rm L(w, b, ξ,α,µ) simplifies to

D(α) =
{
αTe− 1

2α
THα if αTy = 0 and Ce � α � 0

∞ otherwise

� The dual problem of the PRIMAL-C-SVM-QP is a convex QP

α∗ = argmax
α∈Rm

[
αTe− 1

2
αTHα

]
s.t. αTy = 0 , Ce �α � 0
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