
6. tutorial in Prolog

May 17, 2016

1 Practice with assert and retract
Task 1: Learn how to use dynamically modifiable predicates using
assert and retract meta-predicates. First, try some basic commands:

1. Declare the predicate closed as dynamic using “:- dynamic
my_dyn/1.” in your program.

2. Try calling “?- assertz(my_dyn(city1)).”. A next query
“?- closed(X)” should give you the single answer X = city1.

3. Another assertion “?- assertz(my_dyn(city2)).” will add yet
another clause into your program.

4. Remove the first clause by calling “?- retract(my_dyn(city1)).”.
The query “?- my_dyn(X)” should give you a single answer X=city2.

5. Remove all assertions using “?- retractall(my_dyn(_)).”. The
query “?- my_dyn(X)” should give no answer.

Next, choose one of the remaining tasks. You don’t have to finish all of
them, the assert and retract techniques are really straightforward.

1



Task 2: Implement a Floyd-Warshall algorithm in the graph of Euro-
pean cities (see previous tutorials). Its implementation should be very
short:

1. Declare a dynamic predicate floydwarshall(From, To, Distance).
First, declare (programatically) floydwarshall to be true for
journeys of length 1. The floydwarshall should be implied by
the europe predicate.

2. Write a run_fw procedure, which finds an extension of an existing
journey and saves it using assertz(floydwarshall(...)).

3. If run_fw finds a shorter route between existing cities, it removes
the longer journey (using retract) and saves the shorter one (us-
ing assertz).

Task 3: Change the representation of the graph of European cities
(see previous tutorials). Define a new predicate into_adjacency, which
reads the graph in the edge-list representation from previous tutorials:

europe(barcelona, madrid, 504).
europe(belehrad, bukurest, 447).
europe(belehrad, budapest, 316).
...

and stores them into the adjacency-list representation using a dynamic
predicate europe/2:

europe(barcelona, [madrid]).
europe(madrid, [barcelona]).
europe(belehrad, [bukurest, budapest, ...]).
...

Finally, update the bredth-first-search procedure to use this representa-
tion. Your predicates should look simpler.

2



Task 4: Modify the depth-first-search procedure so that the closed
list is not implemented as a separate argument, but as a global dynamic
predicate.

2 Advanced algorithms in Prolog
Task 5: Implement the merge-sort algorithm. First, create a split
predicate, which divides a list into 2 lists of roughly equal size:

?- split([5, 3, 1, 2, 9, 5, 7], X, Y).
X = [5, 1, 9, 7],
Y = [3, 2, 5].

Next, implement the merge predicate, which joins two (sorted) lists into
a larger sorted list:

?- merge([1, 5, 7, 9], [2, 3, 5], X).
X = [1, 2, 3, 5, 5, 7, 9].

Voilà, the merge sort is almost done!

Task 6: Implement a quick-sort algorithm. Modify the split predi-
cate, so that

1. the first item becomes the pivot,

2. the list is divided into items

(a) smaller than the pivot and
(b) larger or equal than the pivot.

?- split([5, 3, 1, 2, 9, 5, 7], X, Y).
X = [3, 1, 2],
Y = [5, 9, 5, 7].

The rest is almost the same as in the merge sort!

3


	Practice with assert and retract
	Advanced algorithms in Prolog

