
SQL – three-valued logics

Name Surname Student
Jaroslav Novák true
Josef Novotný false
Jiří Brabenec

SELECT * FROM OSOBA WHERE Student != true

What will be the result?

SQL – three-valued logics

Name Surname Student
Jaroslav Novák true
Josef Novotný false
Jiří Brabenec

SELECT * FROM OSOBA WHERE Student != true

What will be the result?

Name Surname Student
Josef Novotný false

SQL – three-valued logics

 A = true A = false A = null
A == true true false null
A != true false true null
A == false false true null
A != false true false null

• is null
• is true
• is false

 A = true A = false A = null
A is true true false false
A is not true false true true
A is false false true false
A is not false true false true
A is null false false true
A is not null true true false

SQL – tříhodnotová logika

 A and B
 B == true B == false B == null
A == true true false null
A == false false false false
A == null null false null

 A or B
 B == true B == false B == null
A == true true true true
A == false true False null
A == null true null null

 Not A
A == true false
A == false true
A == null null

Tree structures in relational
database

Representing a tree structure in a
relational database

Goods

Processors Memories

Intel AMD

Pentium IV Celeron Duron Athlon

DDR DIMM

Representing a tree structure in a
relational database

Conceptual model

Representing a tree structure in a
relational database

Logical model

Representing a tree structure in a
relational database

void getTree(int parent) {
 ResultSet rsData = statement.executeQuery(
 “SELECT * FROM TREE WHERE Parent_Id=” + parent);
while (rsData.next()) {
 System.out.println();

 System.out.println(rsData.getString(“Name”));
 parent = rsData.getString(“Parent_Id”);

 getTree(parent);
 }
}

Search for all nodes of given subtree - recursione

Representing a tree structure in a
relational database

Goods

Processors Memories

Intel AMD

Pentium IV Celeron Duron Athlon

DDR DIMM

1

2

3

4 5 6 7

8 9

10 11 12 13

14

15 16

17 18 19 20

21

22

Stromové struktury a relační databáze

COMPONENTS
ID NAME PARENT_ID LEFT RIGHT
1 Kategorie zboží 0 1 22
2 Procesory 1 2 15
3 Intel 2 3 8
4 Pentium IV 3 4 5
5 Celeron 3 6 7
6 AMD 2 9 14

Representing a tree structure in a
relational database

SELECT *
FROM COMPONETS C1, COMPONENTS C2
WHERE C1.NAME = “INTEL” AND
 C2.LEFT > C1.LEFT AND
 C2.RIGHT < C1.RIGHT

Goods

Processors Memories

Intel AMD

Pentium IV Celeron Duron Athlon

DDR DIMM

1

2

3

4 5 6 7

8 9

10 11 12 13

14

15 16

17 18 19 20

21

22

Indices using B-trees

Indicing – a means for perfomance
optimization

SELECT *
FROM PERSON

 WHERE (GENDER=FEMALE) AND (AGE < 32)

The response will be much fatser if there is an index with the index expression
{GENDER, AGE}.

One of the values of this index expressions may be (for example) the pair
<FEMALE, 27>.

Indicing techniques theory (search data structures) is using the term key instead of
index expression. Different from table key !

CREATE INDEX PERSON_GENDER_AGE ON PERSON (GENDER, AGE)

Indicing – a means for perfomance
optimization

Disjunction in a where condition – be carefull.

SELECT *

FROM PERSON
 WHERE (GENDER=FEMALE) OR (AGE < 32)

DBMS should make use of two indices – a to {GENDER} a {AGE}

Some DBMSs (e.g. PostgreSQL) may not use existing indices eficiently – response
to disjunctive queries is slow.

B-tree

B-tree has edfiend:

•  maximum node capacity (max. number of records in a node)
•  minimum node capacity (min. number of records in a tree)

Records inside of a node sorted by the value of the key.

B-tree

nmlog

nmaxlog

•  Each node – 1 database page (typically 1 page = 1 sector)
•  Aim – minimization of the number of databas accesses
•  Depth B-stromu

 best case (all nodes 100% full) ...

 worst case (all nodes have min rocords ...

max(min) … max (min) number
 of reordfs in a node
n ... no. of records in the DB

nminlog

K

Insert into a B-tree

•  Each tree – 1 database page (typically 1 page = 1 disk sector)
•  Initial tree construction – do not fill nodes fully, leave 25% - 30% of capacity free as
 a space for records that will be inserted in the future
•  If a node is full and a new record should be inserted into it, the node needs to be
 split. In such a case also the predecestor node needs to be modified.

Inserting a record into B-tree
Trivial, if the node capacity is not exhausetd yet:

30

New key to be
inserted

10 20 40

50 100

10 20 30

50 100

40

Inserting a record into B-tree
If the node is full, it must be splitted:

10 20 40

50 100

44

42

New key to be
inserted

Separator.
value of its key is the median of the

set of values {10, 20, 40, 42, 44}

10 20

50 100 40

42 44

Deletion of a record in the leaf of the B-tree

move a key
Min ... 2 nodes
Max ... 4 nodes

10 20

50 100 40

42 44 30

10 20

50 100 30

40 44

Key to be deleted

Deletion of a record in the leaf of the B-tree

Node merge

10 20

100 50

40 44

10 20

50 100 40

42 44

Min ... 2 nodes
Max ... 4 nodes

Key to be deleted

Deletion of a record in a non-leaf node of
B-tree

50 100 40

Min ... 2 nodes
Max ... 4 nodes

20 30 10 44 42

Key to be
deleted

48

50 100 42

20 30 10 44 ? 48

Key marked by ? will be the
least key of the violet subtree.

What may follow:
•  node merge
•  key move (from sibling)

Deletion of a record in a non-leaf node of
B-tree

•  This approach means, that we remove the key to be deleted and afterwards bring
 the tree into balanced status again.

•  Not the only one algorithm, other approaches exist.

