Database Systems

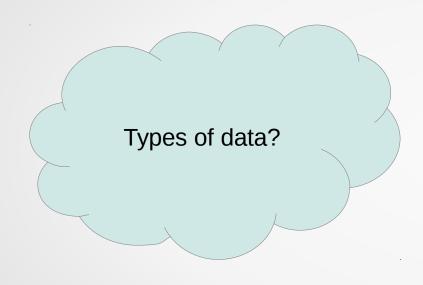
Joint seminar EA4B33DS + A4B33DS

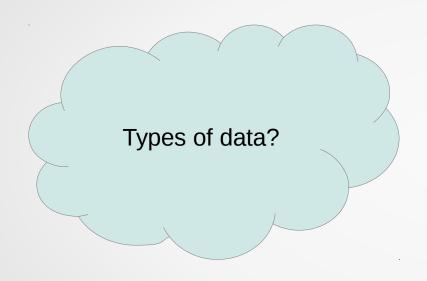
http://cw.felk.cvut.cz

Seminar Organization
Database System Introduction

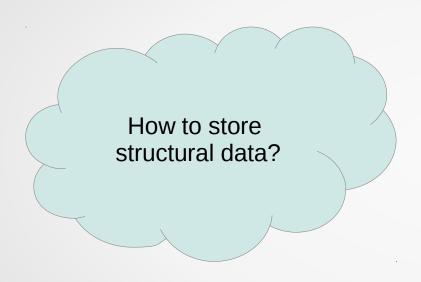
By:
Martin Řimnáč
rimnacm@cs.cas.cz

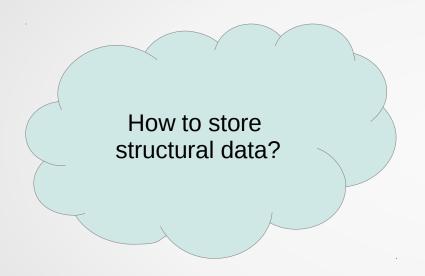
Database Systems - Objectives

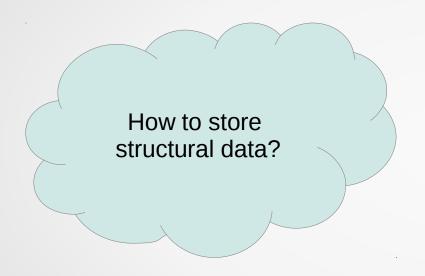

- How
 - design database systems? (E-R Models)
 - query database systems? (SQL)
 - operate with data in database systems? (Insert, Update, Delete)
 - implement a logic layer in database systems? (Procedural Languages)
 - optimize data quering? (Indexes, Query Explain)
 - use data from database systems in JAVA? (JPA-2, SQL Injection)


- At most 2 absences
- Groups including 2 students
 - Work on own topic (max 35 points going to the exam)
 - Topic introduction (3rd week)
 - *E-R Model* (6th week)
 - JAVA aplication demonstration (14th week)
 - Advanced Database System Skills (14th week, voluntary)

- *E-R Model* (6th week, last possibility 7th week)
 - Min 5, Max 10 points
 - Min 6 entities, at least 1 N:M relationship
 - Including description of any integrity contraints

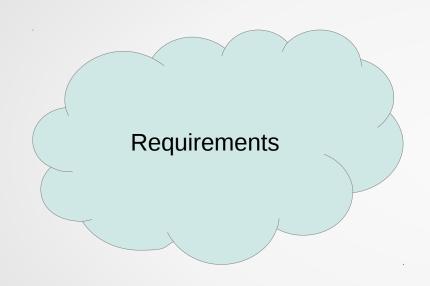

- **JAVA aplication demonstration** (14th week)
 - Database usage (2 of 3 each 4 points, max 8 points)
 - Triggers, stored procedures
 - Writable view
 - JPA 2 + Criteria API
 - User Interface (max 5 points)
 - GUI Swing
 - Demonstration of data manipulation at least in N:M relationship
 - *SQL client Demo* (max 7 points)
 - Client generating data (probably N:M relation)
 - Interesting (topic dependent) SQL queries, at least some using aggragation


- TEST of Database Skills (14th week a voluntary part)
 - Max 5 points
 - Form: "Quide for students, how such a problem can be solved"
 - Can be:
 - Nontrivial optimization (EXPLAIN, INDEX)
 - Nontrivial usage of stored procedure
 - Nontrivial query



- Structural data
 - Tabular (relational) data
 - XML (JSON,...)
- Time sequences (measurements,...)
 - Streamed data
- Multimedia
 - Picture
 - Sound and Video
 - Copy
 - Streams

- Text data (XML)
 - Machine and human readable
 - Redundant format
- Binnary data (MS Word DOC)
 - Machine readable only
 - More effective
 - Depends on (proprietary) format
 - May be changed in next version
 - compatibility



File System

- Easy to backup
- Easy right management
- Issue with participation of many users (locks)

Centralized Storage

- Easy to access by many users
- Mostly client/server
 - Database systems

- Atomic Operations (real time)
- Consistency (to be actual)
- Geographically Distributed

- Atomic Operations (real time)
- Consistency (to be actual)
- Geographically Distributed

Only two properties can be kept:

- → Atomic operations and consitency
 - → Database systems (client/server)
- → Geographic Distribution and (Atomicity or Consistency)
 - → Clouds (distributed, mostly (proxied) peer to peer)