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1 Introduction

Doc. Ing. F. Zlo, CSc. wants1 to reduce the number of students by means of
Robotron [1]. However, the publicly available face detector he has been using so
far produces too many false positive detections (e.g. printed faces on posters).
Given a proper calibration of provided sensors, you can augment bare RGB
images with temperature and depth information. Avoid being exterminated by
Doc. Ing. Zlo CSc., prove yourself useful and find a way to use the temperature
and depth information to improve the detector so that it detects only faces
of real persons. An example of how your algorithm should work is given in
Figure 1. Please note that Doc. Ing. Zlo, who might appear in provided data,
is not a real person.

2 Solution outline

We have used an RGB-D sensor and thermo camera to record target data into
a set of MAT-files, see Section 4 for details. Your task is to improve the given
face detector, which detects faces only in RGB images; see Section 7 for details.
Since the thermo-camera and the depth sensor are also available, it is desirable
to enrich the standard color image by temperature and distance of observed
faces. You will find these measurements useful for improving the face detector.
However, images provided by the sensors are not the same size nor aligned since
the sensors are mounted next to each other so they observe the scene from
different viewpoints. Hence, you will need to find the transformation that binds
pixels of the images together. See Section 5 for details. Once the transformation
among measurements is known, you are expected to build your own detector on

1Except the use-case of Doc. Ing. Zlo, a precise detector of real persons can be further
utilized in several ways. It may also serve as a part of a victim detection system, which
is essential for almost all Search&Rescue robots. Or it may be a part of a security video
surveillance system. Last, but not least, it may be useful for interactive robots to detect
people around them and start a conversation, offer help or some other task. Connected with
(known) face recognition, the possibilities are even greater.
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Figure 1: An example of detected faces filtering using the thermo camera data.
Notice the face outside the thermo camera field of view – the thermo camera
filter would have to leave it untouched even if it weren’t a real person (you can’t
base your decision on missing data!).

top of the provided one, which reduces the number of false positive detections,
see Section 3 for assignment details.

3 Assignment

The steps mentioned below should guide you through the completion of the
semestral work.

1. Calibrate the camera setup

2. Use Zhu-Ramanan face detector implemented in MATLAB

• Initialize face detector:
MY THRESHOLD = x.yy;

load model;

• Run the face detector on image im:
[bounding boxes, scores] = face detect(im, model)

• See README.md for further help.

3. Implement your own classifier

• Use temperature and depth measured within detected bounding boxes
to implement your own classifier.

• It is highly recommended to draw the ROC curves to see the influence
of your classifier, otherwise you can easily do changes which look
reasonable but harm the overall detection rate.

• Ground truth will be provided after test datasets are recorded during
the task assignment lab, link will appear on the course web site [2].
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Note, that correctly drawn ROC curve is a compulsory part of your report.
Both TP and FP are relative with respect to all ground truth faces in all
BAG files – for example: if you have 10 incorrect detections and 50 correct
detections out of 100 ground truth faces, then TP = 0.5 and FP = 0.1).
This also means TP can not have values greater than 1 (the best we can do
is detect all faces), but FP can surely go beyond 1 (if the detector shows too
much false faces). A correctly detected face is a bounding box B covering
ground truth bounding box B0 by more than 50%, i.e.

B ∩B0

B ∪B0
≥ 0.5 (1)

4. Create a PDF file containing only explicit answers to the following ques-
tions:

(a) What is the reprojection error of your calibration matrix?
Output: Real number from interval [0;∞].

(b) You are given a calibration matrix P of your camera. Let us suppose
that you increase the camera resolution two-times (i.e. rows= 2×
rows, cols= 2× cols), while its world position is preserved. Calibra-
tion matrix of the new camera is H ·P. What is the matrix H ∈ R3×3?
Output: Real matrix H ∈ R3×3.

(c) Draw the ROC curve of (i) the provided RGB face detector (with
parameters used for your final detector) and (ii) your final RGB-D-T
face detector, with FP ranging from 0 to at least 1.
Output: One graph with two ROC curves with FP on hori-
zontal axis and TP on the vertical axis.

(d) What is TP for FP = 0.05? (Highest achieved TP will be rewarded by
a bottled beer signed by all IRO teachers and personal congratulation
of doc. Ing. Zlo, CSc. in front of the whole classroom).
Output: Real number from interval [0; 1].

(e) It is obvious that previously defined ROC curves can be identical or
they can touch each other. Is it also possible that one ROC curve
strictly intersects the other (i.e. there is one FP-interval in which the
first ROC has strictly lower FN and another FP-interval in which the
second ROC has strictly lower FN)?
Output: Binary answer {yes,no}.

(f) Let us take your detector with fixed θ corresponding to FP = 0.05
on your testing set consisting of L images with fixed resolution (and
low density of faces). Let us create a new testing set by adding L
background images (images without faces) in the same resolution.
How does the FP, FN change when detector is evaluated on the new
testing set?
Output: Two real numbers N,M ∈ [0;∞] corresponding to
the claim that the resulting false positive is approximately
N × FP and resulting false negative is approximately M × FN.
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5. Submit your work

• Your work has to be uploaded to the Upload system. The report is
submitted to task answers. All your codes should be zipped and sub-
mitted to task code. Do not include any binary files in the submitted
package (MAT files...).

4 Sensors and data description

The first sensor is the ASUS Xtion PRO LIVE providing standard color images
(640x480 pixels) as well as depth images of the same size (a combination of these
two images is denoted as RGB-D). These two images are already calibrated for
you – there is both the RGB and depth information at all pixel coordinates.
The depth information is expressed in meters; zero depth indicates no depth
information at that particular pixel. Depth stands for the Z coordinate of the
corresponding 3D point – a plane parallel with the image sensor will have a
constant value indicated by the depth sensor.

The second sensor is a thermo-camera, namely thermoIMAGER TIM 160
from MICRO-EPSILON. This camera captures infrared images (160x120 pix-
els), where the value of each pixel is the temperature of the corresponding surface
observed by the camera (approximate temperature in our case, emissivity is not
taken into account). In the provided dataset, the temperature is rounded to
integers. Make sure you convert the values into float or double types before
division.

These two sensors are attached to a common holder (see Figure 2 for a
rough idea, the actual setup differs), yet the exact configuration is not known
(by the configuration, we mean the rotation and translation of camera optical
centers). The only known parameter is the RGB-D camera calibration matrix
K. This parameter is sufficient – combined with the depth information – to
project each pixel of the RGB-D camera to corresponding 3D space coordinates.
That is, for each color-depth image pair, you are able to get 640 × 480 points
Xrgbd = [x, y, z]T that create a colored point-cloud. The images are recorded
using Matlab, therefore the output provided to you are MAT files containing all
the images as matrices. The provided MAT files are zipped into the following
archives:

• calibration.zip: image topics with the calibration sequence (the hot
metal plate).

• train-lab-i.zip: image topics with real and artificial faces; use these for
detector design. Use the one, where i corresponds to your class number.

• test.zip: same as the previous one, but ground truth will be provided
for this dataset; use it to evaluate your result.

The first MAT file is available on the course web site, the other two will be
provided after the class where this assignment is presented – students of IRO
will be involved in the recording of these datasets.
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Figure 2: The two sensors involved: ASUS Xtion PRO LIVE (top), thermoIM-
AGER TIM 160 (bottom).

Each zipped archive contains the following files:

• kinect K.mat: contains the calibration matrix K of the PrimeSense cam-
era.

• depth images.mat: Depth data: a matrix of floats of size n × 480 × 640
represented the distance in meters.

• rgb images.mat: RGB data: a matrix of bytes of size n× 480× 640× 3,
where each triplet of the data represents one RGB point.

• thermo images.mat: Thermo data: a matrix of integers of size n× 120×
160 representing the temperature in degrees Celsium.

TECHNICAL NOTE: The sensors generate images with rate higher than
80Hz. To keep the bag files reasonably large, we diminished the rate to ap-
prox. 3Hz by saving only a subset of all available images. Moreover, we chose
the subset to be as synchronous as possible. Thus, you can consider the triplets
of images to be synchronous keeping in mind that small delays may occur.

TECHNICAL NOTE 2: To get a single image out of the provided MAT file,
you have to use the squeeze function like this:
image = squeeze(rgb images(i,:,:,:)) .
You can visualize the images using imagesc.

Doc. Zlo will choose one representative dataset from those created during
the labs and make some poor assistant manually create ground truth. You will
be asked to use this ground truth to evaluate your ROC curves and possibly
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other results. The ground truth will appear on the lab pages in reasonable time.
Each row of the MAT file will contain a record of the type described by Table 1.

image number x1 y1 x2 y2

Table 1: The format of a row of the provided ground truth. The x1, y1 values
are coordinates of a face’s top left corner, whereas x2, y2 represent the bottom
right corner. For one image number, there can be more than one record (more
faces in one picture) and there doesn’t have to be any record for a given image
number (no faces in the picture).

5 Calibration

You are given images captured by a Microsoft-Kinect-like sensor (see Figure 3,
1st and 2nd image) and by a thermo-camera (see Figure 3, 3rd image). Your task
is to find transformation matrix P between the RGB image pixel coordinates and
corresponding pixel coordinates in the thermo-camera image (for those pixels
for which the calibration matrix exists). This procedure is known as calibration
and an example result is depicted in Figure 4.

Figure 3: Three types of images provided in the rosbag file: a standard color
image (left), a depth image (middle) and a thermo-cam image (right). The
assistant is holding a hot metal sheet, that can be easily identified in all three
image types.

During the second IRO lecture and labs, the pin-hole camera model for
projection of 3D points (in the world coordinate frame) into 2D camera plane
was presented. Always visualize the data you work with to make sure you work
in correct reference frames etc.!

Let us make world coordinate frame coincident with the coordinate frame of
the RGB camera. Since RGB images are enriched by depth, we can easily obtain
3D homogeneous coordinates Xrgb ∈ R4 in such world coordinate frame. The
projection of Xrgb into the thermo camera homogeneous coordinates Xthermo ∈
R3 follows the standard pin-hole camera model

Xthermo = PXrgb (2)

with the unknown projection matrix P, which projects 3D points expressed in
the rgb-frame to the image plane of the thermo-camera. Your task is to for-
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Figure 4: An example of the calibration result. Pixels corresponding to the
thermo-camera field-of-view are colored according to their temperature (blue is
cold, red is hot).
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Figure 5: Projection from a 3D scene to an image plane by the ROS conventions.

mulate the search of vectorized matrix p as the solution of the overdetermined
set of homogeneous linear equations Ap = 0, and find its non-trivial solution
p∗ ∈ Rn in the least squares sense; where non-trivial means p∗ 6= 0, overdeter-
mined means that there are more independent equations than unknowns (i.e.
dim rng(A) ≥ n) and the least square sense means solution of the following
optimization problem

p∗ = arg min
p
‖Ap‖, subject to ‖p‖ = 1. (3)

Unfortunately, the optimization is strongly dependent on the origin and
scale of the Euclidean coordinate system in which the correspondence pairs
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x = [x y z]> ∈ R3 and x′ = [u v]> ∈ R2 (corresponding to homogeneous
coordinates Xrgb and Xthermo) are expressed. To suppress such undesirable
property, we normalize coordinate system by transforming points x to a new
set of points y such that the centroid of the points y is the coordinate origin and
the average distance from the origin is

√
3 (then, the “average” point’s distance

is 1). For example, points yi are computed from points xi as follows:

yi =
√

3
(xi − x

σ

)
, (4)

where x = 1
N

∑N
i=1 xi is the centroid and σ = 1

N

∑N
i=1 ‖xi − x‖ is the average

distance. Similarly, points y′i are computed from points x′i as y′i =
√

2
(

x′
i−x′

σ′

)
.

Therefore, it is highly desirable to build matrix A from normalized points yi
and y′i, perform optimization and then incorporate compensation for the effect
of normalization into resulting matrix P as follows:

Pdenormalized = N−1thermPNrgbd (5)

where the inversion of Nrgbd compensates the effects of the 3D RGBD points
normalization:

Nrgbd =


√
3
σ 0 0 −x1

√
3
σ

0
√
3
σ 0 −x2

√
3
σ

0 0
√
3
σ −x3

√
3
σ

0 0 0 1

 (6)

where σ and x are the translation and scaling factors from 4. The second matrix
Ntherm compensates the effects of the 2D thermo coordinates normalization:

Ntherm =


√
2
σ′ 0 −x′1

√
2
σ′

0
√
2
σ′ −x′2

√
2
σ′

0 0 1

 (7)

where σ′ and x′ are the translation and scaling factors for 2D thermo image
coordinates normalization. The resulting matrix Pdenormalized can be used to
project 3D RGBD points into the 2D thermo image coordinates without any
need of normalization.

5.1 Calibration dataset

To perform the calibration it is necessary to identify correspondences between
the camera images. You are provided with a MAT file containing a calibration
dataset, see Figure 3. There are several images that depict an assistant holding
a hot metal sheet. The metal sheet is being moved continuously in front of
the sensors so the field of view of the thermo-camera is roughly covered. The
movement is repeated for several distances from the camera to ensure there
are enough correspondences – the corners of the metal sheet, for example – to
successfully perform the calibration.
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We suggest that you go through all the calibration images (using imagesc

and pause) and select just a few (3-5) frames in which the pose of the metal
sheet is very different. You can then use ginput to click on the corresponding
corners of the metal sheet in both RGB/Depth and Thermo images. This way
you get the Xthermo and Xrgb sets, from which you form the A matrix.

6 Reprojection error

In order to find projection matrix P, 3D-2D correspondences need to be iden-
tified in the calibration dataset between the RGBD sensor and thermo-camera.
Reprojection error stands for average distance between coordinates of the 2D
points used for calibration and those obtained by applying projection matrix P
on their 3D counterparts. Therefore, in the ideal case, we would observe that
after projecting 3D points by our matrix P, they would perfectly coincide with
the original 2D points we used for calibration.

Nevertheless, because of imperfections in the whole calibration chain (imper-
fections of lenses, asynchronous image triplets, depth sensor noise, incorrectly
marked correspondences, . . . ) the original 2D points and those obtained by
projecting the 3D points will not fit. That is to be expected and measured by
the reprojection error. In your assignment, use your 3D-2D correspondences to
evaluate this error, good result is an average error smaller than 2 pixels (we ex-
pect standard euclidean L2 distance). However, be aware of the fact that using
small number of (incorrect) correspondences can lead to minimal reprojection
error (minimum is 6 correspondences that will always lead to – almost – zero
error) while the P matrix is nonsense. Use at least 10 correspondences, the more
the better.

7 Face detection

7.1 The face detector

The Zhu-Ramanan face detector is a detector based on mixtures of trees with
a shared pool of parts, see [4] for details. In its full strength, it provides much
more information about faces in the image than is needed for our task (e.g.
landmark locations and their relative poses). So we slightly altered its output to
just return the smallest bounding box containing all the returned landmarks for
every detected face. Therefore, you can treat the detector as a classifier solving
a binary decision task, with labels y ∈ {F, B} (i.e. Face and Background), on
the set of all rectangles in the image.

7.2 Evaluation of detector quality

A graph depicting the relation between true positives TP(θ) = 1−FN(θ) and false
positives FP(θ) as a function of classification threshold θ is called ROC curve, see
Figure 6. We also introduced ROC curves during the 6th lab (Bayesian decision
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tasks). ROC curve determines the quality of the classifier – for example an ideal
classifier would have some threshold θ for which we would have TP(θ) = 1 and
FP(θ) = 0, i.e. detect 100% faces and make no mistake. However, it is not the
case in real world problems and we have to choose from the trade-off between
TP and FP.
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Figure 6: An example ROC curve. This one was evaluated on different data
than you are provided with, so its shape may differ from the one you get.

7.3 Face detector usage

You find the face detector package on the semestral work page on CourseWare
[3]. Just download it, unzip somewhere, and start Matlab in that folder. Follow
the instructions in README.md to run (and eventually compile) the detector.

The detector has a single parameter you should treat as the θ parameter in
the ROC curve – it is called MY THRESHOLD and is located in the load model.m

script. This script also contains other parameters you can play with (e.g. the
model to use), but evaluation of this task only expects you alter MY THRESHOLD.

You can play with this parameter to obtain a ROC curve for the provided
face detector. The easiest way is to run the detector with a very low threshold,
record the resulting bounding boxes and scores, and then just compare these
scores to various thresholds.
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