
 Formulation of nonlinear systém equations 

 Linearization of continuous nonlinear model 

 Diskretization of linearized state-space model 

 Evaluation of control inputs based on the system motion request and system dynamics 
prediction 

 

The basic form of dynamical equations: 

The typical form of dynamic equations of the mechanical part of robots comes from the  Lagrange 
equations of the mixed type numerically transformed to the independent coordinates.  
 

 
T T T TR MRq+R MRq = R g+R Tu

 

These equations can be extended by the models of electrical drives, compliancies and other 
dynamical properties. The typical advantage of the predictive control of robots and other mechanisms 
is the availability of physical models which can be procesed (for example linearized) exactly.    

 

Discretization: 

The relationships between the discrete state-space matrices A, B, C, D and the continuous-time state-
space matrices F, G, H, D  are given for piece-wise-constant input, as follows: 
 

 

Basic algorithm of predictive control: 

The local behaviour can be described as a linear model by a classical discrete state description with 
locally constant state matrixes A, B and C. The matrix D is considered zero.  
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where x are system states and y are investigated outputs. The transfer function is then transformed 
into the state description. The predictive control can be applied to the model created using the above 
described procedure. 

Writing the relation for N subsequent steps as follows, 
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and rewriting these equations into the matrix form, we obtain the prediction of the outputs 
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The control is derived from the optimization of a quadratic performance index. The performance index 

Jk is optimized in the step k using the prediction 
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where  is a mean value operator, N is the prediction horizon, y is the output vector, w is the desired 
output vector (for robot typically the requested trajectory), Q is a penalization matrix of the outputs, p is 
a penalization of the inputs, 

and 
  T1,...,  Nkk uuu

 is the input vector. From the requirement of the minimization of 
the performance index 
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the control law is derived 
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However, only the first element of the vector u is used for the nearest control action. 

The control problem very often includes the constraints of the values of different variables. In case of 
the robots, the constrained values may involve operation constraints (e.g. drive limits, problems of 
colisions with environment etc.) In order to incorporate these constraints, the direct computation 
procedure (7) must be generalized. Quadratic programming appears to be a good tool for this 
purpose. The unconstrained optimization problem (6) is reformulated as a quadratic optimization 
problem  
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with a constraint condition  

QPQP buA      (9) 

The particular matrices used for quadratic programming follow from equations (3)-(7) 
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This optimization problem is solved in every sampling instant. Again, only the first element of vector u  

is used for the nearest control action. 

 


