2. BASIC CALIBRATION ALGORITHM

The investigated kinematical structures include kimematical loops, at least the virtual ones thiothe
end-effector positioned on calibration artifacteTkinematical loops are described by the kinemiatizastraints
in given position

f(d,s,v) =0, (1
where d are the dimensions of the mechanissnare the input (measured) coordinates in the jainis the
guides andv are the output coordinates, i.e. the position efgéhd-effector. The basic calibration algorithm e.g
[9] uses Newton’s method modified for overconstediisystem of nonlinear algebraic equations (movatans
than unknowns) that follow from the constraints fdimulated for many instances of measuremenis.lIf...,

n positions of the kinematical structure are considgmeasured) then the constraint equations € raupled
into the constraint equations for the calibration
F(d,S,V) =0, (2)

where for the positiopn the constraintf; = f(d,s;,v;) =0 from the equation (1) holds ard=[f,,f,,...f,]",

S=[s,S,...5,]"» V =[V;,V,,...,v,]". In traditional (non-redundant) calibration approathe output
coordinatey are measured by external devices. In the casedohdant (self) calibration approach the used
constraints (2) do not include necessarily measenerof V by external devices/artifacts. The equation (2)
covers both variants.

The calibration is based on the fact that the dsims d are the same (constant) for all positions.
Nevertheless the real values of the manufactuneeasionsd differ from their design valued . Thus the only
unknown variables in the equation (2) are the mactufed dimensionsd. The Newton method of the
calibration is derived from the Taylor series of (2

F(d,S\V)+J 0d+...=0 (3)
with Jacobi matrixJ, of partial derivatives of the kinematical congttai (2) with respect to the calibrated
dimensionsd . Hence

J40d =-F(d,S,V) = r o
and the-th iteration step of Newton’s method [9] is
& =g 3g) g I, (5)

where Jg; is the Jacobi matrix andr; =-F(d;,S,V)is the vector of deviations computed from measured

quantities and calibrated quantities from the previous step. The new values of the dsimns are then
computed
diy =d; + & (6)

and the iterations continue until the deviatiors @ecreasing. The basic calibration procedure gesvis with
the unique solution for the given data. This solutis typically unique for very broad region oftial guesses of
parameters of iterative solution by Newton’'s method

3. CALIBRATION OF MACHINE TOOL TRIJOINT  900H

Horizontal machine centre TRIJOINT 900H [10, 21]aismachine tool of hybrid concept developed in
cooperation of KOVOSVIT MAS Inc. Sezimovo Usti aBépartment of Mechanics, Faculty of Mechanical
Engineering CTU in Prague. The machine consistisvofparts, the cutting tool part and workpiece patte
cutting tool part realizes the planar motion oftitgt tool and represents a planar mechanism wilFfOFs (in
Fig. 1 a) there is the real machine, in Fig. 1ightrthe kinematical scheme). The workpiece partsigis of
moving and rotating table and mechanism of paletighange. It realizes translational motion perpandr to
the plane of cutting tool motion.

On two linear guidances there are moving the c@esa2 and 5 to which the arms 3 and 4 are attabiied
rotational joints. The tool is fixed to the arm 4.

The basis of the non-redundant calibration probfemmulation for TRIJOINT 900H is the kinematic
transformation between the coordinates of drive (plositions of carriages, = si, (t), S5 = Si5 (1) ), the
dimensions of the mechanist®[X1py Yipa Xips Yirs B2: Ps: Iz 14, Xav, Yav] @nd the positions of the cutting tool
on the machine platformx{ =xy (t), W= yv (t)) measured by calibration artifact (Fig. 2). Actyal



Xy Yoy ] = Fir (120 S35, d) (7)

a) Machine with scheme of workspace Kitgmatical schemwith calibration parameters
Figure 1. Machine tool Trijoint 900H

is the direct kinematical solution of the mechanismthe case of TRIJOINT 900H it is simply solabh
closed analytical form, where

X1023 ®= le2 + 5,(t)cos(B,), y1023 ()= yle +5p, (t)sin(B,)

: (8)
X0, (1) = Xip, +515(1)€0S(5), Yi0,, (1) = Y1, + S5 ()SINGSs)
I?? = |2 + (Xlo23 (t) - X1054 (t))z + (ylozs(t) - y1054 (t))z -
=243 (%6, ) = X0, ) + (g, (1) = Yy, (D)7 COSD)
therefore
V) =+ arccosl(f * (%0, 0 ~ %o, (®)°+ V0, ~ Yo, ®)°-13
2'4\/()(1023 (t) - )(1054 (t))z + (y1023 (t) - y1054 (t))z
(9)

040, 0= X, @)+ (Yo, (0 ~ Y, ()7 cOSB(D) =

cos(&s)}

= [0, 0 %6 ®) Yo, O Vi, (‘”Lm A

and consequelhyt
50 = arccos 0.0 X0, ) +SINB) Yo, (O~ Yio, )
JC0,, 0= X0, 0) + (Y6, (0~ Vi, ()2

Finally the actual position of the spindle centrés\evaluated concerning the appropriate configoman y(t)
formula (9)

Xy (1) = Xy (1) + (14 = Xqy) €OS(B5 + S(1) = (1)) + Yav SIN(Bs + A(t) = /(1))
Yo (©) = Yo, (0 + (15 = Xay )SIN(Bs + (1) = )(1) — Yav COSBs + S(1) = ¥(1))-

(10)

The equations (10) for considered calibration pmsiis used for the formulation of equation (1}he form

XlV ,measured XlV,computed =0

(11)
ylV,measured_ y1V,computed =0.

Thanks to the analytical form of (1) and conseqlye(®) the Jacobi matrixJ, (3) of partial derivatives of

constraint equations with respect to the calibrafiarameters can be simply analytically computextofdingly



the algorithm of the iterative solution (3)-(6) ftre unknown dimensiond can be applied on the basis of
measurements of positions of cutting tool spindetie V by an external artefachljbration plate with calibration
pins) (Fig. 2) and simultaneous measurements of diweedinates s, Sis.

o

Plate with 99 calibration pins
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Figure 2.Calibration procedure using plate with 99 calibmai pins, iterations results

The calibration of Trijoint 900H has been succedbsfrealized with the final spindle positioning errin the

range 5-1Qum within the whole machine workspace with the araayhy 1 nf (Fig. 1 a)). However it has been
found out, that the parameters determined fromdifferent realizations of calibration measuremevisy
considerably [25, 27]. Therefore the basic procedinom the section 2 has been modified. The section

explains the modification generally, whereas ifgligation to Trijoint is shown in section 5.



4. MODIFIED CALIBRATION ALGORITHM

Very often the convergency of the basic calibrajiwacedure doesn’t guarantee better machine peafocen
[16]. The fundamental reason of this phenomenam igteraction of the inferior conditionality oh&ar systems
solved during the iterations of Newton's method,am@ement errors, and errors of model simplificeio
regarding real machine. Consequently it is verjulse acquire deeper insight into relations betwparameter
space and space of calibration results. The cratéegd towards efficient mapping of the parametercspis

singular value decomposition (SVD) of system masiof iterations (5) of Newton method

31y =us v 12)
The matrices); and V, are orthonormal ¥;* =U/,v, > =V;") and S; is diagonal matrix of singular values
sequenced in the descending order. Considering 8¥gation (5) can be rewritten into form
UsVv'ad, =J," ;. (13)
The singular value decomposition introduces vedbruxiliary variabley; =ViT&ii, which are generally
evaluated from equation
Sy =UlJ"a; . (14)
If the rank of system matrix is reducedbfmatrix is singular, lastsingular values are zeros), the lastiple of
elements of auxiliary vectol/; serves as a free parameters of solution. Uniqlitiso is replaced by-

parametric solution. However also for the non-siageases (like the Trijoint calibration) the lowesngular
values identify the subspace of parameters mostlyenced by the measurement errors. The mappirtheof
possible calibration solutions within this subsphas been performed as follows.

1. Only few iterations of the Newton method are coesed. Experience indicates that two or three
iterations are typically enough for reaching santirom the reasonable (design) starting point iwith
the parameter space.

2. The last (corresponding to lowest singular valugsments of the auxiliary vectorg; (i=1,2) are

considered as a free optimisation parameters, \&kate rest of elements is computed standardly from
the equations (14).
3. The appropriate objective functions representing ¢hlibration error using different norms are put

together (e.g.i (|de,j|+|dyN,j |)/n, or T%)ﬂdXN’j|,|dyN’j|), wheren is the number of calibration
= )

positions anddxy, ; ,dy,, ; are final computational errors for tfx#h position).

4. The multiobjective genetic optimization is used fbe finding of the Pareto set of the objective
functions because of its natural mapping of sotutipace within the favourable region.

The optimization can be realized by the minimizatid the composed single objective function usireighted
sum of the partial objective functions (error noyif&0] or using the complete multiobjective optiminat [31].
The number of distinctively low singular values armhsequently the number of free optimisation patans is
typically very low (up to 10 optimisation parameferAlso the necessary interval of parameter sgelsn
narrow. Therefore there are no problems with thindpation convergence. The described calibratiadified

by the optimization is typically the modest compiata, which takes few minutes on the common PC.

5. MODIFIED CALIBRATION ALGORITHM FOR TRIJOINT 906

The singular values of TRIJOINT calibration problevere typically in the range from 2*i@o 2*10*. The
calibration problem is far from pure singularitygwever the part of solution connected to the loveasgjular
values has been mapped using the algorithm frortioged in order to further improve obtained machine
accuracy. The optimization using weighted sumhef partial objective functions (error nornj8p] has been
used. The number of the optimization parametersbbas 6, for 2 lowest singular values and 3 itertiof the
Newton method. The improvement of the objectivecfioms stagnates after approximatelly 600 — 700
evaluations of the objective functions. The totalmier of the objective functions evaluations during
optimization was 2000. Example of the results a talibration optimization is given by Fig. 3. Theo
alternative error norms are depicted. The parametiriants for the experimental testing have bedacted
from the results on the frontier of the best restdgion (Pareto set).
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Figure 3. Example of results of calibration optiatinn of alternative error norms
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Figure 4. Trijoint 900H - measurement of straighgs@®r horizontal and vertical direction

Finally several parametric variants from the Pargd have been experimentally tested by the stragh
measurements (Fig. 4). The best one (Fig. 5) has aplemented to the machine control algorithmise T
important generalization of the experience from Thgoint calibration is that the condition numbef the
calibration task should be optimized during thenesirly stage of machine design.

6. CALIBRABILITY AS ADDITIONAL DESIGN CRITERION

As concluded in the previous section, it is vergfukto acquire a good conditionality of the cadition task
already during the design process. It can be inflad by several design properties namely the machin
structure, values of its geometrical parametersthachumber and positioning of the sensors. Basetthat the
concept of calibrability is introduced and the desimeasure of calibrabilit¢ is defined as a pendant of other
traditional design criterions, namely

C=condJg; ' Jgq,). (15)
The smaller value of the calibrability the more accurate determination of the unknowneadotalues of the
manufactured parameters and the more accurate determination of the outpotdinatesv from the input
coordinates, i.e. the smaller resulting positioning errors filoe same accuracy of the accuracy of the particula
sensors. Further crucial after-design aspeceighioice of the set of calibration positions of ti@chine.
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Figure 5. Results of experimental testing of stnéigss of parametric variants from the Pareto set
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