3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203
rev. October 3, 2023

Open Informatics Master's Course

Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

1. in this picture we are looking 'down the street'
2. right-handed canonical coordinate system (x, y, z) with unit vectors $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$
3. origin $=$ center of projection C
4. image plane π at unit distance from C
5. optical axis O is perpendicular to π
6. principal point x_{p} : intersection of O and π
7. perspective camera is given by C and π

projected point in the natural image coordinate system:

$$
\tan \alpha=\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

Natural and Canonical Image Coordinate Systems

projected point in canonical camera $(z \neq 0)$

$$
\begin{aligned}
& \text { int in canonical camera }(z \neq 0) \\
& \left(x^{\prime}, y^{\prime}, 1\right)=\left(\frac{x}{z}, \frac{y}{z}, 1\right)=\frac{1}{z}(x, y, z) \simeq(x, y, z) \equiv\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\underbrace{0}_{\mathbf{R}_{\theta}=[\mathbf{I}}] \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned} \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0} \underline{\mathbf{X}}
$$

projected point in scanned image

$$
\begin{aligned}
& u=f \frac{x}{z}+u_{0} \\
& v=f \frac{y}{z}+v_{0}
\end{aligned}
$$

- 'calibration' matrix \mathbf{K} transforms canonical \mathbf{P}_{0} to standard perspective camera \mathbf{P}

－Computing with Perspective Camera Projection Matrix

Projection from world to image in standard camera \mathbf{P} ：

$$
\underbrace{\left[\begin{array}{cccc}
f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
f x+u_{0} z \\
f y+v_{0} z \\
z
\end{array}\right] \simeq \underbrace{\left[\begin{array}{c}
x+\frac{z}{f} u_{0} \\
y+\frac{z}{f} v_{0} \\
\frac{z}{f}
\end{array}\right]}_{(\mathrm{a})} \simeq\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\underline{\mathbf{m}}
$$

cross－check：$\quad \frac{m_{1}}{m_{3}}=\frac{f x}{z}+u_{0}=u, \quad \frac{m_{2}}{m_{3}}=\frac{f y}{z}+v_{0}=v \quad$ when $\quad m_{3} \neq 0$
$f-$＇focal length＇－converts length ratios to pixels，$\quad[f]=\mathrm{px}, \quad f>0$
$\left(u_{0}, v_{0}\right)$－principal point in pixels

Perspective Camera：

1．dimension reduction
2．nonlinear unit change $1 \mapsto 1 \cdot z / f$ ，see（a）
for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the u_{0}, v_{0} in relative units
3．$\left(m_{1}, m_{2}, 0\right)$ represents points at infinity in image plane π
i．e．points with $z=0$

Changing The Outer（World）Reference Frame

A transformation of a point from the world to camera coordinate system：

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

\mathbf{R}－rotation matrix world orientation in the camera coordinate frame \mathcal{F}_{c}

\mathbf{t}－translation vector world origin in the camera coordinate frame \mathcal{F}_{c}

$$
\begin{aligned}
& \mathbf{P} \underline{\mathbf{X}}_{c}=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{X}_{c} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\
1
\end{array}\right]=\underbrace{\mathbf{K}}_{\mathbf{P}_{0}} \begin{aligned}
{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] } & \underbrace{\left.\begin{array}{ll}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\mathbf{R}(3)}]
\end{aligned} \underbrace{\mathbf{X}_{w}}_{\mathbf{X}_{w}} 1 \\
& \text { - } \mathbf{R} \text { is rotation, } \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1
\end{aligned}
$$

－ 6 extrinsic parameters： 3 rotation angles（Euler theorem）， 3 translation components
－alternative，often used，camera representations \quad～

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \quad \text { i.e. } \mathbf{C}=-\mathbf{R}^{\top} \mathbf{t}
$$

$\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix
\mathbf{P}_{0}（a $3 \times 4 \mathrm{mtx}$ ）discards the last row of \mathbf{T}

C－camera position in the world reference frame \mathcal{F}_{w}
\mathbf{r}_{3}^{\top}－optical axis in the world reference frame $\mathcal{F}_{w}{ }^{w}$ cam： $\mathbf{o}_{c}=(1,0,0)$ ，world： $\mathbf{o}_{w}=-\mathbf{R}^{\top} \mathbf{o}_{c}=\mathbf{r}_{3}^{\top}$

$$
\mathbf{t}=-\mathbf{R C}
$$

$$
\text { third row of } \mathbf{R}
$$

－we can save some conversion and computation by noting that $\quad \mathbf{K R}\left[\begin{array}{ll}\mathbf{I} & -\mathbf{C}\end{array}\right] \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$

-Changing the Inner (Image) Reference Frame

The general form of calibration matrix \mathbf{K} includes

- skew angle θ of the digitization raster
- pixel aspect ratio a

$$
\mathbf{K}=\left[\begin{array}{ccc}
a f & -a f \cot \theta & u_{0} \\
0 & f / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

$\circledast \mathrm{H} 1$; 2 pt : Give the parameters $f, a, \theta, u_{0}, v_{0}$ a precise meaning by decomposing \mathbf{K} to simple maps; deadline LD+2wk Hints:

1. image projects to orthogonal system F^{\perp}, then it maps by skew to F^{\prime}, then by scale $a f, f$ to $F^{\prime \prime}$, then by translation by u_{0}, v_{0} to $F^{\prime \prime \prime}$
2. Skew: Do not confuse it with the shear mapping. Express point \mathbf{x} as

$$
\mathbf{x}=u^{\prime} \mathbf{e}_{u^{\prime}}+v^{\prime} \mathbf{e}_{v^{\prime}}=u^{\perp} \mathbf{e}_{u}^{\perp}+v^{\perp} \mathbf{e}_{v}^{\perp}, \quad u, v \in \mathbb{R}
$$

e: are unit-length basis vectors $\mathbf{e}_{u}^{\perp}=\mathbf{e}_{u}^{\prime}=(1,0), \mathbf{e}_{v}^{\perp}=(0,1), \ldots$

consider their four pairwise dot-products $\left(\mathbf{e}_{u}^{\prime}\right)^{\top} \mathbf{e}_{u}^{\perp}=0, \quad\left(\mathbf{e}_{u}^{\prime}\right)^{\top} \mathbf{e}_{v}^{\prime}=\cos (\theta), \ldots$
3. \mathbf{K} maps from F^{\perp} to $F^{\prime \prime \prime}$ as

$$
w^{\prime \prime \prime}\left[u^{\prime \prime \prime}, v^{\prime \prime \prime}, 1\right]^{\top}=\mathbf{K}\left[u^{\perp}, v^{\perp}, 1\right]^{\top}
$$

-Summary: Projection Matrix of a General Finite Perspective Camera

$$
\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \simeq \mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$$
\text { a recipe for filling } \mathbf{P}
$$

general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: $f, u_{0}, v_{0}, a, \theta$
- 6 extrinsic parameters: $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

Representation Theorem: The set of projection matrices \mathbf{P} of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix \mathbf{Q} non-singular.
random finite camera: $Q=\operatorname{rand}(3,3)$; while $\operatorname{det}(Q)==0, Q=\operatorname{rand}(3,3) ;$ end, $P=[Q, \operatorname{rand}(3,1)]$;

Projection Matrix Decomposition

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

\[

\]

1. $\left[\begin{array}{ll}\mathbf{Q} & \mathbf{q}\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]=\left[\begin{array}{ll}\mathbf{K R} & \mathbf{K t}\end{array}\right]$

$$
\text { also } \rightarrow 35
$$

2. RQ decomposition of $\mathbf{Q}=\mathbf{K R}$ using three Givens rotations
$\mathbf{R}_{i j}$ zeroes element $i j$ in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g.
$(3,2) \neq \varnothing \quad Q \mathbf{R}_{32}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right]$ gives $\begin{gathered}c^{2}+s^{2}=1 \\ 0=k_{32}=c q_{32}+s q_{33}\end{gathered} \Rightarrow c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{-q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}$

* P1; 1pt: Multiply known matrices \mathbf{K}, \mathbf{R} and then decompose back; discuss numerical errors
- RQ decomposition nonuniqueness: $\mathbf{K R}=\mathbf{K} \mathbf{T}^{-1} \mathbf{T R}$, where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive
'thin' RQ decomposition
- care must be taken to avoid overflow, see [Golub \& van Loan 2013, sec. 5.2]

|RQ Decomposition Step

```
Q = Array [ q##1,#2 &,{3, 3}];
R32 ={{1,0,0},{0, c,-s},{0, s,c}}; R32 // MatrixForm
```

$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right)$
Q1 = Q.R32 ; Q1 // MatrixForm
$\left(\begin{array}{lll}q_{1,1} & c & q_{1,2}+s q_{1,3}-s q_{1,2}+c \\ q_{2,1} & c & q_{2,2}+s \\ q_{2,3} & -s q_{2,2}+c & q_{2,3} \\ q_{3,1} & c & q_{3,2}+s \\ q_{3,3} & -s & q_{3,2}+c\end{array} q_{3,3}\right)$
$s 1=\operatorname{Solve}\left[\left\{Q 1[[3]][[2]]=0, c^{\wedge} 2+s \wedge 2=1\right\},\{c, s\}\right][[2]]$
$\left\{c \rightarrow \frac{q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}, s \rightarrow-\frac{q_{3,2}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}}\right\}$
Q1 /. s1 // Simplify // MatrixForm
$\left(\begin{array}{ccc}q_{1,1} \frac{-q_{1,3} q_{3,2}+q_{1,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{1,2} q_{3,2}+q_{1,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\ q_{2,1} & \frac{-q_{2,3} q_{3,2}+q_{2,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{2,2} q_{3,2}+q_{2,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\ q_{3,1} & \sqrt{q_{3,2}^{2}+q_{3,3}^{2}}\end{array}\right)$

Center of Projection（Optical Center）

Observation：finite \mathbf{P} has a non－trivial right null－space

Theorem

rank 3 but 4 columns

Let \mathbf{P} be a camera and let there be $\underline{B} \neq \mathbf{0}$ s．t． $\mathbf{P} \underline{B}=\mathbf{0}$ ．Then \underline{B} is equivalent to the projection center $\underline{\mathbf{C}}$ （homogeneous，in world coordinate frame）．

Proof．

1．Let $A B$ be a spatial line（ B given from $\mathbf{P} \underline{\mathbf{B}}=\mathbf{0}, A \neq B$ ）．Then

$$
\underline{\mathbf{X}}(\lambda) \simeq \lambda \underline{\mathbf{A}}+(1-\lambda) \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R} \quad \text { (world frame) }
$$

2．It projects to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \lambda \mathbf{P} \underline{\mathbf{A}}+(1-\lambda) \mathbf{P} \underline{\mathbf{B}} \simeq \mathbf{P} \underline{\mathbf{A}} \simeq \underline{m_{1}}
$$

－the entire line projects to a single point \Rightarrow it must pass through the projection center of \mathbf{P}
－this holds for any choice of $A \neq B \Rightarrow$ the only common point of the lines is the C ，i．e．$\underline{\mathrm{B}} \simeq \underline{\mathbf{C}}$
Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q} \quad \circledast \text { verify from } \rightarrow 30
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$ ，where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$ ，in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped
Matlab：C＿homo＝null（P）；or C＝－Q\q；

- Optical Ray

Optical ray：Spatial line that projects to a single image point．
1．Consider the following spatial line（world coordinate frame）
$\mathbf{d} \in \mathbb{R}^{3}$ line direction vector，$\|\mathbf{d}\|=1, \lambda \in \mathbb{R}$ ，Cartesian representation

$$
\mathbf{X}(\lambda)=\mathbf{C}+\lambda \mathbf{d}
$$

2．The projection of the（finite）point $X(\lambda)$ is $Q C+q=0 \rightarrow 35$

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}(\lambda) \\
1
\end{array}\right]=\mathbf{Q}(\mathbf{C}+\lambda \mathbf{d})+\mathbf{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right][\begin{array}{c}
\mathbf{d} \\
0
\end{array} \underbrace{}_{\mathbb{R}} \mathbf{X}_{\infty}
\end{aligned}
$$

－optical ray line corresponding to image point m is the set

$$
\mathbf{X}(\mu)=\mathbf{C}+\mu \mathbf{Q}^{-1} \underline{\mathbf{m}}, \quad \mu \in \mathbb{R} \quad(\mu=1 / \lambda)
$$

－optical ray direction may be represented by a point at infinity $(\mathbf{d}, 0)$ in \mathbb{P}^{3}
optical ray is expressed in the world coordinate frame

- Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points X on a given line N parallel to π project to a point at infinity $(u, v, 0)$ in π :

$$
\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right] \simeq \mathbf{P} \underline{\mathbf{X}}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

2. therefore the set of points X is parallel to π iff

$$
q_{31} \cdot x+q_{32} \cdot y+q_{33} \cdot z \quad \mathbf{q}_{3}^{\top} \mathbf{x}+q_{34}=0
$$

3. this is a plane equation with $\pm \mathbf{q}_{3}$ as the normal vector
4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5. we select (assuming $\operatorname{det}(\mathbf{R})>0$)

$$
\mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
$$

if $\mathbf{P} \mapsto \lambda \mathbf{P}$ then $\operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q})$ and $\mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}, \quad$ hence $\mathbf{o} \mapsto \mathbf{o}, \lambda^{4}=\partial \quad \lambda \mp \pm 1 \quad[H \& Z, \mathbf{p} .161]$

- the axis is expressed in the world coordinate frame

Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, \mathbf{q}_{3} is the directional vector of optical axis
2. we take point at infinity on the optical axis that must project to the principal point m_{0}
3. then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

- principal point is also the center of radial distortion

-Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.

$$
\begin{array}{rlrl}
& \text { optical ray given by } m & \mathbf{d} & \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}} \\
\text { optical ray given by } m^{\prime} & \mathbf{d}^{\prime} & \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}
\end{array}
$$

$$
\begin{array}{r}
\mathbf{p} \simeq \mathbf{d} \times \mathbf{d}^{\prime}=\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}\right) \times\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}\right) \stackrel{\circledast 1}{=} \mathbf{Q}^{\top}\left(\underline{\mathbf{m}} \times \underline{\mathbf{m}}^{\prime}\right)=\mathbf{Q}^{\top} \underline{\mathbf{n}} \\
\text { • note the way } \mathbf{Q} \text { factors out! }
\end{array}
$$

hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X}-\mathbf{C})}_{\rightarrow 30}=\underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}}$ for every X in plane ρ
optical plane is given by n :

$$
\underline{\rho} \simeq \mathbf{P}^{\top} \underline{\mathbf{n}}
$$

$$
\rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0
$$

Cross－Check：Optical Ray as Optical Plane Intersection

$$
\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}
$$

Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{\mathbf{C}} \simeq \operatorname{rnull}(\mathbf{P}), \quad \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q} \\
& \mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}} \\
& \mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3} \\
& \underline{\mathbf{m}}_{0} \simeq \mathbf{Q}_{\mathbf{q}_{3}} \\
& \underline{\boldsymbol{\rho}}=\mathbf{P}^{\top} \underline{\mathbf{n}} \\
& \mathbf{K}=\left[\begin{array}{ccc}
a f & -a f \cot \theta & u_{0} \\
0 & f / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \mathbf{R} \\
& \mathbf{t}
\end{aligned}
$$

projection center (world coords.) $\rightarrow 35$ optical ray direction (world coords.) $\rightarrow 36$ outward optical axis (world coords.) $\rightarrow 37$ principal point (in image plane) $\rightarrow 38$ optical plane (world coords.) $\rightarrow 39$
camera (calibration) matrix $\left(f, u_{0}, v_{0}\right.$ in pixels) $\rightarrow 31$
rotation matrix (cam coords.) $\rightarrow 30$
translation vector (cam coords.) $\rightarrow 30$

Thank You

