3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 3, 2023

Open Informatics Master's Course

► Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

- 1. in this picture we are looking 'down the street'
- 2. right-handed canonical coordinate system (x,y,z) with unit vectors ${\bf e}_x,\,{\bf e}_y,\,{\bf e}_z$
- 3. $\operatorname{origin} = \operatorname{center} \operatorname{of} \operatorname{projection} C$
- 4. image plane π at unit distance from C
- 5. optical axis O is perpendicular to π
- **6**. principal point x_p : intersection of O and π
- 7. perspective camera is given by C and π

projected point in the natural image coordinate system:

$$\tan\alpha = \frac{y'}{1} = y = \frac{y}{1+z-1} = \frac{y}{z}, \qquad x' = \frac{x}{z}$$

► Natural and Canonical Image Coordinate Systems

projected point in canonical camera
$$(z \neq 0)$$

$$(x',y',1) = \left(\frac{x}{z},\,\frac{y}{z},\,1\right) = \frac{1}{z}(x,y,z) \simeq (x,y,z) \equiv \begin{bmatrix} x\\y\\z \end{bmatrix} = \underbrace{\begin{bmatrix} 1&0&0&0\\0&1&0&0\\0&0&1&0 \end{bmatrix}}_{\mathbf{P}_0=\begin{bmatrix}\mathbf{I}&\mathbf{A}\end{bmatrix}} \begin{bmatrix} x\\y\\z\\1 \end{bmatrix} = \mathbf{P}_0\,\mathbf{\underline{X}}$$

projected point in scanned image

ullet 'calibration' matrix ${f K}$ transforms canonical ${f P}_0$ to standard perspective camera ${f P}$

scale by f and translate origin to image corner

▶ Computing with Perspective Camera Projection Matrix

Projection from world to image in standard camera P:

$$\underbrace{\begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{P}} \underbrace{\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}}_{z} = \begin{bmatrix} fx + u_0z \\ fy + v_0z \\ z \end{bmatrix} \simeq \underbrace{\begin{bmatrix} x + \frac{z}{f}u_0 \\ y + \frac{z}{f}v_0 \\ \frac{z}{f} \end{bmatrix}}_{\mathbf{(a)}} \simeq \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \mathbf{\underline{m}}$$

cross-check:
$$\frac{m_1}{m_3} = \frac{f x}{z} + u_0 = u, \qquad \frac{m_2}{m_3} = \frac{f y}{z} + v_0 = v \quad \text{when} \quad m_3 \neq 0$$

$$f$$
 – 'focal length' – converts length ratios to pixels, $[f] = px$, $f > 0$

 (u_0,v_0) – principal point in pixels

Perspective Camera:

- 1. dimension reduction
- 2. nonlinear unit change $1 \mapsto 1 \cdot z/f$, see (a)

for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1/f$ and the $u_0,\,v_0$ in relative units

3. $(m_1, m_2, 0)$ represents points at infinity in image plane π

i.e. points with z=0

since $\mathbf{P} \in \mathbb{R}^{3,4}$

► Changing The Outer (World) Reference Frame

A transformation of a point from the world to camera coordinate system:

$$\mathbf{X}_c = \mathbf{R} \, \mathbf{X}_w + \mathbf{t}$$

 ${f R}$ – rotation matrix $\,\,$ world orientation in the camera coordinate frame ${\cal F}_c$

R - rotation matrix world orientation in the camera coordinate frame
$$\mathcal{F}_c$$
 t - translation vector world origin in the camera coordinate frame \mathcal{F}_c

P $\underline{\mathbf{X}}_c = \mathbf{KP}_0 \begin{bmatrix} \mathbf{X}_c \\ 1 \end{bmatrix} = \mathbf{KP}_0 \begin{bmatrix} \mathbf{R}\mathbf{X}_w + \mathbf{t} \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{0}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{X}_w \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \underbrace{\mathbf{X}_w}_{\mathbf{N}} \simeq \underbrace{\mathbf{M}}_{\mathbf{N}} \mathbf{T}^{-1} = \underbrace{\mathbf{N}}_{\mathbf{N}}^{-1} \underbrace{\mathbf{N}}_{\mathbf{N}}^{-1} = \underbrace{\mathbf{N}}_{\mathbf{N}}^{-1}$

$$\mathbf{P}_0$$
 $\mathbf{T} \in \mathbb{R}^{4 \times 4}$ \mathbf{P}_0 (a 3 × 4 mtx) discards the last row of \mathbf{T}

- \mathbf{R} is rotation, $\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}$, $\det \mathbf{R} = +1$
- 6 extrinsic parameters: 3 rotation angles (Euler theorem), 3 translation components

alternative, often used, camera representations
$$\mathbf{P} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$
 i.e. $\mathbf{C} = -\mathbf{R}^{\top} \mathbf{t}$

$$\mathbf{C}$$
 – camera position in the world reference frame \mathcal{F}_w \mathbf{r}_v^{\top} – optical axis in the world reference frame \mathcal{F}_w cam: $\mathbf{o}_c = (1,0,0)$, world: $\mathbf{o}_w = -\mathbf{R}^{\top} \mathbf{o}_c = \mathbf{r}_v^{\top}$

we can save some conversion and computation by noting that KR[I -C] X = KR(X - C)

third row of R

 $\mathbf{I} \in \mathbb{R}^{3,3}$ identity matrix

t = -RC

R. Šára, CMP: rev. 3-Oct-2023

▶Changing the Inner (Image) Reference Frame

The general form of calibration matrix K includes

- skew angle θ of the digitization raster
- pixel aspect ratio a

$$\mathbf{K} = \begin{bmatrix} a f & -a f \cot \theta & u_0 \\ 0 & f/\sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

 \circledast H1; 2pt: Give the parameters $f,a, heta,u_0,v_0$ a precise meaning by decomposing ${f K}$ to simple maps; deadline LD+2wk

Hints:

- 1. image projects to orthogonal system F^{\perp} , then it maps by skew to F', then by scale af, f to F'', then by translation by u_0 , v_0 to F'''
- 2. Skew: Do not confuse it with the shear mapping. Express point x as

$$\mathbf{x} = u'\mathbf{e}_{u'} + v'\mathbf{e}_{v'} = u^{\perp}\mathbf{e}_{u}^{\perp} + v^{\perp}\mathbf{e}_{v}^{\perp}\,, \qquad u,v \in \mathbb{R}$$

 ${f e}_{:}$ are unit-length basis vectors ${f e}_{u}^{\perp}={f e}_{u}'=(1,0),\ {f e}_{v}^{\perp}=(0,1),\ldots$

consider their four pairwise dot-products $(\mathbf{e}'_u)^{\top} \mathbf{e}'_u = 0$, $(\mathbf{e}'_u)^{\top} \mathbf{e}'_v = \cos(\theta)$, ...

3. **K** maps from F^{\perp} to F''' as

$$w'''[u''', v''', 1]^{\top} = \mathbf{K}[u^{\perp}, v^{\perp}, 1]^{\top}$$

▶Summary: Projection Matrix of a General Finite Perspective Camera

$$\underline{\mathbf{m}} \simeq \mathbf{P}\underline{\mathbf{X}}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \simeq \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K}\mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$

a recipe for filling ${f P}$

finite camera: $\det \mathbf{K} \neq 0$

general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: f, u_0 , v_0 , a, θ
- 6 extrinsic parameters: \mathbf{t} , $\mathbf{R}(\alpha, \beta, \gamma)$

Representation Theorem: The set of projection matrices \mathbf{P} of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix \mathbf{Q} non-singular.

random finite camera: Q = rand(3,3); while det(Q) ==0, Q = rand(3,3); end, P = [Q, rand(3,1)];

▶ Projection Matrix Decomposition

$$\mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \quad \longrightarrow \quad \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

 $\begin{array}{lll} \mathbf{Q} \in \mathbb{R}^{3,3} & & \underbrace{\text{full rank}} & \text{(if finite perspective camera; see [H\&Z, Sec. 6.3] for cameras at infinity)} \\ \mathbf{K} \in \mathbb{R}^{3,3} & & \underbrace{\text{upper triangular with positive diagonal elements}}_{\mathbf{R}^{\top}\mathbf{R} = \mathbf{I} \text{ and } \det \mathbf{R} = +1} \\ \end{array}$

$$1. \ [\mathbf{Q} \quad \mathbf{q}] = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \begin{bmatrix} \mathbf{K} \mathbf{R} & \mathbf{K} \mathbf{t} \end{bmatrix}$$

also →35

2. RQ decomposition of Q = KR using three Givens rotations

[H&Z, p. 579]

$$\mathbf{K} = \mathbf{Q} \underbrace{\mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21}}_{\mathbf{R}^{-1}} \qquad \mathbf{Q} \mathbf{R}_{32} = \begin{bmatrix} \vdots & \vdots \\ \vdots & 0 \end{bmatrix}, \ \mathbf{Q} \mathbf{R}_{32} \mathbf{R}_{31} = \begin{bmatrix} \vdots & \vdots \\ 0 & 0 \end{bmatrix}, \ \mathbf{Q} \mathbf{R}_{32} \mathbf{R}_{31} \mathbf{R}_{21} = \begin{bmatrix} \vdots & \vdots \\ 0 & 0 \end{bmatrix}$$

 \mathbf{R}_{ij} zeroes element ij in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g. (see the next slide for derivation details)

- ® P1; 1pt: Multiply known matrices K, R and then decompose back; discuss numerical errors
 - RQ decomposition nonuniqueness: $\mathbf{K}\mathbf{R} = \mathbf{K}\mathbf{T}^{-1}\mathbf{T}\mathbf{R}$, where $\mathbf{T} = \mathrm{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive 'thin' RQ decomposition
 - care must be taken to avoid overflow, see [Golub & van Loan 2013, sec. 5.2]

RQ Decomposition Step

$$\begin{pmatrix} q_{1,1} & c & q_{1,2} + s & q_{1,3} & -s & q_{1,2} + c & q_{1,3} \\ q_{2,1} & c & q_{2,2} + s & q_{2,3} & -s & q_{2,2} + c & q_{2,3} \\ q_{3,1} & c & q_{3,2} + s & q_{3,3} & -s & q_{3,2} + c & q_{3,3} \end{pmatrix}$$

$$s1 = Solve [{Q1[[3]][[2]] = 0, c^2 + s^2 = 1}, {c, s}][[2]]$$

$$\left\{c \to \frac{q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}}, \ s \to -\frac{q_{3,2}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}}\right\}$$

Q1 /. s1 // Simplify // MatrixForm

$$\begin{pmatrix} q_{1,1} & \frac{-q_{1,3} \ q_{3,2} + q_{1,2} \ q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} & \frac{q_{1,2} \ q_{3,2} + q_{1,3} \ q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} \\ \\ q_{2,1} & \frac{-q_{2,3} \ q_{3,2} + q_{2,2} \ q_{3,3}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} & \frac{q_{2,2} \ q_{3,2} + q_{3,3} \ q_{3,2}}{\sqrt{q_{3,2}^2 + q_{3,3}^2}} \\ \\ q_{3,1} & 0 & \sqrt{q_{3,2}^2 + q_{3,3}^2} \\ \end{pmatrix}$$

▶Center of Projection (Optical Center)

Observation: finite P has a non-trivial right null-space \mathcal{C}

rank 3 but 4 columns

Theorem

Let P be a camera and let there be $\underline{B} \neq 0$ s.t. $P \underline{B} = 0$. Then \underline{B} is equivalent to the projection center \underline{C} (homogeneous, in world coordinate frame).

Proof.

1. Let AB be a spatial line (B given from PB = 0, $A \neq B$). Then

$$\underline{\mathbf{X}}(\lambda) \simeq \lambda \, \underline{\mathbf{A}} + (1 - \lambda) \, \underline{\mathbf{B}}, \qquad \lambda \in \mathbb{R}$$
 (world frame)

- $(-\lambda)$ $\underline{\mathbf{B}}$, $\lambda \in \mathbb{R}$ (world frame
- 2. It projects to

$$\mathbf{P}\underline{\mathbf{X}}(\lambda) \simeq \lambda \, \mathbf{P}\,\underline{\mathbf{A}} + (1 \longrightarrow \lambda) \, \mathbf{P}\,\underline{\mathbf{B}} \simeq \mathbf{P}\,\underline{\mathbf{A}} \simeq \underline{\mathbf{M}}$$

- ullet the entire line projects to a single point \Rightarrow it must pass through the projection center of ${f P}$
- this holds for any choice of $A \neq {\color{red} B} \Rightarrow$ the only common point of the lines is the C, i.e. ${\color{red} \underline{\bf B}} \simeq {\color{red} \underline{\bf C}}$

Hence

$$\mathbf{0} = \mathbf{P}\,\underline{\mathbf{C}} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{1} \end{bmatrix} = \mathbf{Q}\,\mathbf{C} + \mathbf{q} \ \Rightarrow \ \boxed{\mathbf{C} = -\mathbf{Q}^{-1}\mathbf{q}}$$

 \circledast verify from \rightarrow 30

 $\underline{\mathbf{C}} = (c_j)$, where $c_j = (-1)^j \det \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab: $\mathtt{C}_{\mathtt{homo}} = \mathtt{null}(\mathtt{P})$; or $\mathtt{C} = -\mathtt{Q} \setminus \mathtt{q}$;

П

► Optical Ray

Optical ray: Spatial line that projects to a single image point.

1. Consider the following spatial line (world coordinate frame) $\mathbf{d} \in \mathbb{R}^3$ line direction vector, $\|\mathbf{d}\| = 1, \ \lambda \in \mathbb{R},$ Cartesian representation

$$\mathbf{X}(\lambda) = \mathbf{C} + \lambda \, \mathbf{d}$$

$$\mathbf{X}(\lambda) = \mathbf{C} + \lambda \, \mathbf{d}$$
2. The projection of the (finite) point $X(\lambda)$ is $\mathbf{QC} + \mathbf{q} = \mathbf{0}$
$$\mathbf{\underline{m}} \simeq \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{X}(\lambda) \\ 1 \end{bmatrix} = \mathbf{Q}(\mathbf{C} + \lambda \mathbf{d}) + \mathbf{q} = \lambda \, \mathbf{Q} \, \mathbf{d} =$$

$$= \lambda \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ 0 \end{bmatrix}$$
... which is also the image of a point at infinity in \mathbb{P}^3

m

ullet optical ray line corresponding to image point m is the set

$$\mathbf{X}(\mu) = \mathbf{C} + \mu \mathbf{Q}^{-1} \underline{\mathbf{m}}, \qquad \mu \in \mathbb{R} \qquad (\mu = 1/\lambda)$$

optical ray direction may be represented by a point at infinity $(\mathbf{d},0)$ in \mathbb{P}^3

optical ray is expressed in the world coordinate frame

▶Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points X on a given line N parallel to π project to a point at infinity (u,v,0) in π :

$$\begin{bmatrix} u \\ v \\ 0 \end{bmatrix} \simeq \mathbf{P} \underline{\mathbf{X}} = \begin{bmatrix} \mathbf{q}_1^\top & q_{14} \\ \mathbf{q}_2^\top & q_{24} \\ \mathbf{q}_3^\top & q_{34} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$

2. therefore the set of points X is parallel to π iff

$$q_{31} \cdot X + q_{32} \cdot q + q_{13} \cdot Z \qquad \mathbf{q}_{3}^{\top} \mathbf{X} + q_{34} = 0$$

- optical axis direction: substitution $P \mapsto \lambda P$ must not change the direction
- 5. we select (assuming $det(\mathbf{R}) > 0$)

$$\mathbf{o} = \det(\mathbf{Q}) \, \mathbf{q}_3$$

$$\mathbf{q}_2 \mapsto \lambda \, \mathbf{q}_2 \quad \text{hence } \mathbf{o} \mapsto \mathbf{o}_1 \lambda^{1/2} = \mathbf{o}_1$$

$$\text{if }\mathbf{P}\mapsto \lambda\mathbf{P} \text{ then } \det(\mathbf{Q})\mapsto \lambda^3\det(\mathbf{Q}) \text{ and } \mathbf{q}_3\mapsto \lambda\,\mathbf{q}_3, \text{ hence }\mathbf{o}\mapsto \mathbf{o}\cdot \lambda^{\frac{1}{2}}=1$$

the axis is expressed in the world coordinate frame

▶Principal Point

Principal point: The intersection of image plane and the optical axis

- 1. as we saw, q_3 is the directional vector of optical axis
- 2. we take point at infinity on the optical axis that must project to the principal point $m_{\rm 0}$
- 3. then

$$\underline{\mathbf{m}}_0 \simeq \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{q}_3 \\ 0 \end{bmatrix} = \mathbf{Q} \, \mathbf{q}_3$$

principal point:

$$\underline{\mathbf{m}}_0 \simeq \mathbf{Q}\,\mathbf{q}_3$$

principal point is also the center of radial distortion

▶Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.

 $\mathbf{b}_{\mathbf{v}} = \mathbf{0} \quad \mathbf{v}^{\mathsf{T}}(\mathbf{v} + \mathbf{G}) \quad \mathbf{v}^{\mathsf{T}}(\mathbf{v} + \mathbf{G})$

hence, $0 = \mathbf{p}^{\top}(\mathbf{X} - \mathbf{C}) = \underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X} - \mathbf{C})}_{\rightarrow 30} = \underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}} = (\mathbf{P}^{\top} \underline{\mathbf{n}})^{\top} \underline{\mathbf{X}}$ for every X in plane ρ

optical plane is given by n: $\boldsymbol{\rho} \simeq \mathbf{P}^{\top} \mathbf{\underline{n}}$

 $\rho_1 x + \rho_2 y + \rho_3 z + \rho_4 = 0$

Cross-Check: Optical Ray as Optical Plane Intersection

►Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$\mathbf{P} = egin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} = egin{bmatrix} \mathbf{q}_1^{ op} & q_{14} \ \mathbf{q}_2^{ op} & q_{24} \ \mathbf{q}_3^{ op} & q_{34} \end{bmatrix} = \mathbf{K} egin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K} \mathbf{R} egin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$

$$\underline{\mathbf{C}} \simeq \text{rnull}(\mathbf{P}), \quad \mathbf{C} = -\mathbf{Q}^{-1}\mathbf{q}$$

$$\mathbf{d} = \mathbf{Q}^{-1} \, \underline{\mathbf{m}}$$

$$\mathbf{o} = \det(\mathbf{Q}) \, \mathbf{q}_3$$

$$\underline{\mathbf{m}}_0 \simeq \mathbf{Q} \, \mathbf{q}_3$$

$$oldsymbol{ec{
ho}} = \mathbf{P}^ op \, \mathbf{ar{n}}$$

$$\mathbf{K} = \begin{bmatrix} a f & -a f \cot \theta & u_0 \\ 0 & f/\sin \theta & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $egin{array}{c} \mathbf{R} \ \mathbf{t} \end{array}$

projection center (world coords.)
$$\rightarrow$$
35 optical ray direction (world coords.) \rightarrow 36

outward optical axis (world coords.)
$$\rightarrow$$
37

principal point (in image plane)
$$\rightarrow$$
38 optical plane (world coords.) \rightarrow 39

camera (calibration) matrix
$$(f,\,u_0,\,v_0$$
 in pixels) $ightarrow31$

rotation matrix (cam coords.)
$$\rightarrow$$
30 translation vector (cam coords.) \rightarrow 30

